Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Calpain silencing by a reversible intrinsic mechanism

Abstract

Uncontrolled activation of calpain can lead to necrotic cell death and irreversible tissue damage. We have discovered an intrinsic mechanism whereby the autolysis-generated protease core fragment of calpain is inactivated through the inherent instability of a key α-helix. This auto-inactivation state was captured by the 1.9 Å Ca2+-bound structure of the protease core from m-calpain, and sequence alignments suggest that it applies to about half of the calpain isoforms. Intact calpain large subunits are also subject to this inhibition, which can be prevented through assembly of the heterodimers. Other isoforms or their released cores are not silenced by this mechanism and might contribute to calpain patho-physiologies.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Properties of m-calpain protease core and hybrid calpain.
Figure 2: Structural comparison of the calcium-bound μ- and m-minicalpains.
Figure 3: Structural changes at the active site of mI-II.
Figure 4: Hydrophobic core collapses in mI-II but not in μI-II.
Figure 5: DIII confers structural support to the labile protease core from m-calpain.
Figure 6: Heterodimer reconstitution.

Accession codes

Accessions

Protein Data Bank

References

  1. Glading, A., Lauffenburger, D.A. & Wells, A. Cutting to the chase: calpain proteases in cell motility. Trends Cell Biol. 12, 46–54 (2002).

    CAS  Article  PubMed  Google Scholar 

  2. Huang, Y. & Wang, K.K. The calpain family and human disease. Trends Mol. Med. 7, 355–362 (2001).

    CAS  Article  PubMed  Google Scholar 

  3. Sorimachi, H. & Suzuki, K. The structure of calpain. J. Biochem. 129, 653–664 (2001).

    CAS  Article  PubMed  Google Scholar 

  4. Santella, L., Kyozuka, K., De Riso, L. & Carafoli, E. Calcium, protease action, and the regulation of the cell cycle. Cell Calcium 23, 123–130 (1998).

    CAS  Article  PubMed  Google Scholar 

  5. Wang, K.K. Calpain and caspase: can you tell the difference? Trends Neurosci. 23, 20–26 (2000).

    Article  PubMed  Google Scholar 

  6. Moldoveanu, T. et al. A Ca2+ switch aligns the active site of calpain. Cell 108, 649–660 (2002).

    CAS  Article  PubMed  Google Scholar 

  7. Khorchid, A. & Ikura, M. How calpain is activated by calcium. Nat. Struct. Biol. 9, 239–241 (2002).

    CAS  Article  PubMed  Google Scholar 

  8. Gabrijelcic-Geiger, D. et al. Human μ-calpain: simple isolation from erythrocytes and characterization of autolysis fragments. Biol. Chem. 382, 1733–1737 (2001).

    CAS  Article  PubMed  Google Scholar 

  9. Nishimura, T. & Goll, D.E. Binding of calpain fragments to calpastatin. J. Biol. Chem. 266, 11842–11850 (1991).

    CAS  PubMed  Google Scholar 

  10. Crawford, C., Brown, N.R. & Willis, A.C. Studies of the active site of m-calpain and the interaction with calpastatin. Biochem. J. 296, 135–142 (1993).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Hosfield, C.M., Elce, J.S., Davies, P.L. & Jia, Z. Crystal structure of calpain reveals the structural basis for Ca2+-dependent protease activity and a novel mode of enzyme activation. EMBO J. 18, 6880–6889 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Strobl, S. et al. The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proc. Natl. Acad. Sci. USA 97, 588–592 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Yoshizawa, T., Sorimachi, H., Tomioka, S., Ishiura, S. & Suzuki, K. Calpain dissociates into subunits in the presence of calcium ions. Biochem. Biophys. Res. Commun. 208, 376–383 (1995).

    CAS  Article  PubMed  Google Scholar 

  14. Dutt, P., Arthur, J.S., Croall, D.E. & Elce, J.S. m-Calpain subunits remain associated in the presence of calcium. FEBS Lett. 436, 367–371 (1998).

    CAS  Article  PubMed  Google Scholar 

  15. Suo, S., Koike, H., Sorimachi, H., Ishiura, S. & Suzuki, K. Association and dissociation of the calcium-binding domains of calpain by Ca2+. Biochem. Biophys. Res. Commun. 257, 63–66 (1999).

    CAS  Article  PubMed  Google Scholar 

  16. Kitagaki, H. et al. Autolysis of calpain large subunit inducing irreversible dissociation of stoichiometric heterodimer of calpain. Biosci. Biotechnol. Biochem. 64, 689–695 (2000).

    CAS  Article  PubMed  Google Scholar 

  17. Pal, G.P., Elce, J.S. & Jia, Z. Dissociation and aggregation of calpain in the presence of calcium. J. Biol. Chem. 276, 47233–47238 (2001).

    CAS  Article  PubMed  Google Scholar 

  18. Nakagawa, K., Masumoto, H., Sorimachi, H. & Suzuki, K. Dissociation of m-calpain subunits occurs after autolysis of the N-terminus of the catalytic subunit, and is not required for activation. J. Biochem. 130, 605–611 (2001).

    CAS  Article  PubMed  Google Scholar 

  19. Berti, P.J. & Storer, A.C. Alignment/phylogeny of the papain superfamily of cysteine proteases. J. Mol. Biol. 246, 273–283 (1995).

    CAS  Article  PubMed  Google Scholar 

  20. Jesenberger, V. & Jentsch, S. Deadly encounter: ubiquitin meets apoptosis. Nat. Rev. Mol. Cell Biol. 3, 112–121 (2002).

    CAS  Article  PubMed  Google Scholar 

  21. Stennicke, H.R., Ryan, C.A. & Salvesen, G.S. Reprieval from execution: the molecular basis of caspase inhibition. Trends Biochem. Sci. 27, 94–101 (2002).

    CAS  Article  PubMed  Google Scholar 

  22. Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9, 459–470 (2002).

    CAS  Article  PubMed  Google Scholar 

  23. Arthur, J.S., Elce, J.S., Hegadorn, C., Williams, K. & Greer, P.A. Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division. Mol. Cell. Biol. 20, 4474–4481 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Zimmerman, U.J., Boring, L., Pak, J.H., Mukerjee, N. & Wang, K.K. The calpain small subunit gene is essential: its inactivation results in embryonic lethality. IUBMB Life 50, 63–68 (2000).

    CAS  Article  PubMed  Google Scholar 

  25. Kunkel, T.A., Bebenek, K. & McClary, J. Efficient site-directed mutagenesis using uracil-containing DNA. Methods Enzymol. 204, 125–139 (1991).

    CAS  Article  PubMed  Google Scholar 

  26. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  27. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  28. McRee, D.E. A visual protein crystallographic software system for X11/XView. J. Mol. Graph. 10, 44–46 (1992).

    Article  Google Scholar 

  29. Merritt, E.A. & Bacon, D.J. RASTER3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    CAS  Article  PubMed  Google Scholar 

  30. Cohen, G.E. ALIGN: a program to superimpose protein coordinates, accounting for insertions and deletions. J. Appl. Crystallogr. 30, 1160–1161 (1997).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Government of Canada's Network of Centres of Excellence program supported by the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council through PENCE (the Protein Engineering Network of Centres of Excellence), and the Heart and Stroke Foundation of Ontario. P.L.D. was supported by a Killam Research Fellowship, and T.M. by an Ontario Graduate Scholarship. Z.J. is a Canada Research Chair in Structural Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Davies.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moldoveanu, T., Hosfield, C., Lim, D. et al. Calpain silencing by a reversible intrinsic mechanism. Nat Struct Mol Biol 10, 371–378 (2003). https://doi.org/10.1038/nsb917

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb917

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing