Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open α subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase

Abstract

The crystal structure of the tetrameric α2β2 acetyl-coenzyme A synthase/carbon monoxide dehydrogenase from Moorella thermoacetica has been solved at 1.9 Å resolution. Surprisingly, the two α subunits display different (open and closed) conformations. Furthermore, X-ray data collected from crystals near the absorption edges of several metal ions indicate that the closed form contains one Zn and one Ni at its active site metal cluster (A-cluster) in the α subunit, whereas the open form has two Ni ions at the corresponding positions. Alternative metal contents at the active site have been observed in a recent structure of the same protein in which A-clusters contained one Cu and one Ni, and in reconstitution studies of a recombinant apo form of a related acetyl-CoA synthase. On the basis of our observations along with previously reported data, we postulate that only the A-clusters containing two Ni ions are catalytically active.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fold of the ACS/CODH αcββαo tetramer in the monoclinic (C2) crystal form.
Figure 2: Structure of the A-clusters in the αc and αo subunits depicted as ball-and-stick models.
Figure 3: Stereo view of a superposition of the Ao- and Ac-clusters.
Figure 4: Stereo views of the structure of the C-cluster in the β subunit.
Figure 5: Proposed catalytic mechanism and schematic representation of the A-clusters.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Huber, C. & Wachtershauser, G. Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276, 245–247 (1997).

    Article  CAS  Google Scholar 

  2. Wood, H.G. & Ljungdahl, L.G Autotrophic character of acetogenic bacteria. in Variation in Autotrophic Life (eds. Shively, J.M. & Barton, L.L.) 201–250 (Academic Press, New York; 1991).

    Google Scholar 

  3. Dobbek, H., Svetlitchnyi, V., Gremer, L., Huber, R. & Meyer, O. Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science 293, 1281–1285 (2001).

    Article  CAS  Google Scholar 

  4. Drennan, C.L., Heo, J., Sintchak, M.D., Schreiter, E. & Ludden, P.W. Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase. Proc. Natl. Acad. Sci. USA 98, 11973–11978 (2001).

    Article  CAS  Google Scholar 

  5. Lindahl, P.A., Munck, E. & Ragsdale, S.W. CO dehydrogenase from Clostridium thermoaceticum. EPR and electrochemical studies in CO2 and argon atmospheres. J. Biol. Chem. 265, 3873–3879 (1990).

    CAS  PubMed  Google Scholar 

  6. Maynard, E.L. & Lindahl, P.A. Evidence of a molecular tunnel connecting the active sites for CO2 reduction and acetyl-CoA synthesis in acetyl-CoA synthase from Clostridium thermoaceticum. J. Am. Chem. Soc. 121, 9221–9222 (1999).

    Article  CAS  Google Scholar 

  7. Seravalli, J. & Ragsdale, S.W. Channeling of carbon monoxide during anaerobic carbon dioxide fixation. Biochemistry 39, 1274–1277 (2000).

    Article  CAS  Google Scholar 

  8. Doukov, T.I., Iverson, T.M., Seravalli, J., Ragsdale, S.W. & Drennan, C.L. A Ni-Fe-Cu center in a bifuctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science 298, 567–572 (2002).

    Article  CAS  Google Scholar 

  9. Lu, W.P., Harder, S.R. & Ragsdale, S.W. Controlled potential enzymology of methyl transfer reactions involved in acetyl-CoA synthesis by CO dehydrogenase and the corrinoid/iron-sulfur protein from Clostridium thermoaceticum. J. Biol. Chem. 265, 3124–3133 (1990).

    CAS  PubMed  Google Scholar 

  10. Barondeau, D.P. & Lindahl, P.A. Methylation of carbon monoxide dehydrogenase from Clostridium thermoaceticum and the mechanism of acetyl-CoA synthesis. J. Am. Chem. Soc. 119, 3959–3970 (1997).

    Article  CAS  Google Scholar 

  11. Ragsdale, S.W. & Wood, H.G. Acetate biosynthesis by acetogenic bacteria. Evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps of the synthesis. J. Biol. Chem. 260, 3970–3977 (1985).

    CAS  PubMed  Google Scholar 

  12. Tucci, G.C. & Holm, R.H. Nickel-mediated formation of thio esters from bound methyl, thiols, and carbon monoxide: a possible reaction pathway of acetyl-coenzyme A synthase activity in nickel-containing carbon monoxide dehydrogenases. J. Am. Chem. Soc. 117, 6489–6496 (1995).

    Article  CAS  Google Scholar 

  13. Montet, Y. et al. Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nat. Struct. Biol. 4, 523–526 (1997).

    Article  CAS  Google Scholar 

  14. Shin, W. & Lindahl, P.A. Function and CO binding properties of the NiFe complex in carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochemistry 31, 12870–12875 (1992).

    Article  CAS  Google Scholar 

  15. Tan, X.S., Sewell, C., Yang, Q. & Lindahl, P.A. Reduction and methyl transfer kinetics of the α subunit from acetyl-coenzyme A synthase. J. Am. Chem. Soc. 125, 318–319 (2003).

    Article  CAS  Google Scholar 

  16. Tan, X.S., Sewell, C. & Lindahl, P.A. Stopped-flow kinetics of methyl group transfer between the corrinoid-iron-sulfur protein and acetyl-coenzyme A synthase from Clostridium thermoaceticum. J. Am. Chem. Soc. 124, 6277–6284 (2002).

    Article  CAS  Google Scholar 

  17. Ragsdale, S.W., Ljungdahl, L.G. & Dervartanian, D.V. 13C and 61Ni isotope substitutions confirm the presence of a nickel(III)-carbon species in acetogenic CO dehydrogenases. Biochem. Biophys. Res. Commun 115, 658–665 (1983).

    Article  CAS  Google Scholar 

  18. Ragsdale, S.W., Wood, H.G. & Antholine, W.E. Evidence that an iron-nickel-carbon complex is formed by reaction of carbon monoxide with the carbon monoxide dehydrogenase from Clostridium thermoaceticum. Proc. Natl. Acad. Sci. USA 82, 6811–6814 (1985).

    Article  CAS  Google Scholar 

  19. Xia, J. & Lindahl, P.A. Assembly of an exchange-coupled [Ni:′Fe4S4] cluster in the α metallosubunit of CO dehydrogenase from Clostridium thermoaceticum with spectroscopic properties and CO-binding ability mimicking those of the acetyl-CoA synthase active site. J. Am. Chem. Soc. 118, 483–484 (1996).

    Article  CAS  Google Scholar 

  20. Russell, W.K., Stålhandske, C.M.V., Xia, J., Scott, R.A. & Lindahl, P.A. Spectroscopic, redox and structural characterization of the Ni-labile and nonlabile forms of the acetyl-CoA synthase active site of CO dehydrogenase. J. Am. Chem. Soc. 120, 7502–7510 (1998).

    Article  CAS  Google Scholar 

  21. Shin, W., Anderson, M.E. & Lindahl, P.A. Heterogeneous nickel environments in carbon monoxide dehydrogenase from Clostridium thermoaceticum. J. Am. Chem. Soc. 115, 5522–5526 (1993).

    Article  CAS  Google Scholar 

  22. Shin, W. & Lindahl, P.A. Low spin quantitation of NiFeC EPR signal from carbon monoxide dehydrogenase is not due to damage incurred during protein purification. Biochim. Biophys. Acta 1161, 317–322 (1993).

    Article  CAS  Google Scholar 

  23. Lindahl, P.A., Ragsdale, S.W. & Münck, E. Mössbauer study of CO dehydrogenase from Clostridium thermoaceticum. J. Biol. Chem. 265, 3880–3888 (1990).

    CAS  PubMed  Google Scholar 

  24. Wilson, B.E. & Lindahl, P.A. Equilibrium dialysis study and mechanistic implications of coenzyme A binding to acetyl-CoA synthase/carbon monoxide dehydrogenase from Clostridium thermoaceticum. J. Biol. Inorg. Chem. 4, 742–748 (1999).

    Article  CAS  Google Scholar 

  25. Musie, G., Farmer, P.J., Tuntulani, T., Reibenspies, J.H. & Darensbourg, M.Y. Influence of sulfur metalation on the accessibility of the NiII/I couple in [N, N′-Bis(2-mercaptoethyl)-1,5-diazacyclootanato]nickel(II): insight into the redox properties of [NiFe]-hydrogenase. Inorg. Chem. 35, 2176–2183 (1996).

    Article  CAS  Google Scholar 

  26. Lai, C.-H., Reibenspies, J.H. & Darensbourg, M.Y. Thiolate bridged nickel-iron complexes containing both iron(0) and iron(II) carbonyls. Angew. Chem. Int. Ed. Engl. 35, 2390–2393 (1996).

    Article  CAS  Google Scholar 

  27. Bouwman, E., Henderson, R.K., Spek, A.L. & Reedijk, J. Spontaneous assembly of a novel tetranuclear Ni-Fe complex by complete reshuffling of ligands and oxidation states. Eur. J. Inorg. Chem. 1999, 217–219 (1999).

    Article  Google Scholar 

  28. Tolman, C.A. Electron donor-acceptor properties of phosphorus ligands. Substituent additivity. J. Am. Chem. Soc. 92, 2953–2956 (1970).

    Article  CAS  Google Scholar 

  29. Shultz, C.S., DeSimone, J.M. & Brookhart, M. Four- and five-coordinate CO insertion mechanisms in d8-nickel(II) complexes. J. Am. Chem. Soc. 123, 9172–9173 (2001).

    Article  CAS  Google Scholar 

  30. Tolman, C.A., Seidel, W.C. & Gosser, L.W. Formation of three-coordinate nickel(0) complexes by phosphorus ligand dissociation from NiL4 . J. Am. Chem. Soc. 96, 53–60 (1973).

    Article  Google Scholar 

  31. Hsiao, Y.-M., Chojnacki, S.S., Hinton, P., Reibenspies, J.H. & Darensbourg, M.Y. Organometallic chemistry of sulfur/phosphorus donor ligand complexes of nickel(II) and nickel(0). Organometallics 12, 870–875 (1993).

    Article  CAS  Google Scholar 

  32. Cotton, F.A. & Wilkinson, G. The chemistry of the transition elements. in Advanced Inorganic Chemistry 5th edn. 741–754 (Wiley, New York; 1997).

    Google Scholar 

  33. Volbeda, A. et al. Structure of the (NiFe) hydrogenase active site: evidence for biologically uncommon Fe ligands. J. Am. Chem. Soc. 118, 12989–12996 (1996).

    Article  CAS  Google Scholar 

  34. Fan, C., Gorst, C.M., Ragsdale, S.W. & Hoffman, B.M. Characterization of the nickel-iron-carbon complex formed by reaction of carbon monoxide with the carbon monoxide dehydrogenase from Clostridium thermoaceticum by Q-band ENDOR. Biochemistry 30, 431–435 (1991).

    Article  CAS  Google Scholar 

  35. Collman, J.P., Hegedus, L.S., Norton, J.R. & Finke, R.G. Intramolecular insertion reactions. in Principles and Applications of Organotransition Metal Chemistry 355–399 (University Science Books, Mill Valley; 1987).

    Google Scholar 

  36. Gencic, S. & Grahame, D.A. Nickel in subunit β of the acetyl-CoA decarbonylase/synthetase multienzyme complex in methanogens. J. Biol. Chem. 278, 6101–6110 (2003).

    Article  CAS  Google Scholar 

  37. Lundie, L.L. Jr. & Drake, H.L. Development of a minimally defined medium for the acetogen Clostridium thermoaceticum. J. Bacteriol. 159, 700–703 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vernède, X. & Fontecilla-Camps, J.C. A method to stabilize reduced and/or gas-treated protein crystals by flash-cooling under a controlled atmosphere. J. Appl. Crystallogr. 32, 505–509 (1999).

    Article  Google Scholar 

  39. Kabsch, W. Integration, scaling, space-group assignment and post refinement. in International Tables for Crystallography, Volume F, Crystallography of Biological Macromolecules (eds. Rossmann, M.G. & Arnold, E.) Ch. 11.3 (Kluwer Academic Publishers, Dordrecht; 2001).

    Google Scholar 

  40. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  41. Terwilliger, T.C. & Berendzen, J. Automated structure solution for MIR and MAD. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  42. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  43. Terwilliger, T.C. Map-likelihood phasing. Acta Crystallogr. D 57 1763–1775 (2001).

    Article  CAS  Google Scholar 

  44. Perrakis, A., Morris, R.J. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  45. Roussel, A. & Cambillau, C. Turbo-Frodo (Silicon Graphics, Mountain View; 1989).

  46. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likehood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  47. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001).

    Article  CAS  Google Scholar 

  48. Volbeda, A. Spéléologie des hydrogenases à nickel et à fer. Les écoles physique et chimie du vivant 1, 47–52 (1999).

    Google Scholar 

  49. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  50. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  51. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  52. Lawrence, M.C. & Bourke, P. A program for generating electron density isosurfaces from Fourier syntheses in protein crystallography. J. Appl. Crystallogr. 33, 990–991 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Rabilloud for preparing the NDSB195 reagent and M.Y. Darensbourg for helpful discussion about the feasibility of a Nip0 state. This study was supported by the Robert A. Welch Foundation, the National Institutes of Health and by the CEA and the CNRS through institutional funding. We also thank L. Martin for excellent technical help. We appreciate the help with X-ray data collection from the following scientists working at the European Synchrotron Radiation Facility: L. Jacquamet and M. Pirocchi (LCCP and BM30), J. McCarthy (ID14EH1) and G. Sainz (ID29).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Fontecilla-Camps.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darnault, C., Volbeda, A., Kim, E. et al. Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open α subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase. Nat Struct Mol Biol 10, 271–279 (2003). https://doi.org/10.1038/nsb912

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb912

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing