Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loading direction regulates the affinity of ADP for kinesin

Abstract

Kinesin is an ATP-driven molecular motor that moves processively along a microtubule. Processivity has been explained as a mechanism that involves alternating single- and double-headed binding of kinesin to microtubules coupled to the ATPase cycle of the motor. The internal load imposed between the two bound heads has been proposed to be a key factor regulating the ATPase cycle in each head. Here we show that external load imposed along the direction of motility on a single kinesin molecule enhances the binding affinity of ADP for kinesin, whereas an external load imposed against the direction of motility decreases it. This coupling between loading direction and enzymatic activity is in accord with the idea that the internal load plays a key role in the unidirectional and cooperative movement of processive motors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurement of unbinding force.
Figure 2: Unbinding force distributions at various ADP concentrations.
Figure 3: Proportion of weak binding component, W, at various ADP concentrations.
Figure 4: Schematic illustrations showing equilibrium of ADP (D) binding to a complex of kinesin (nucleotide-binding pocket is shown) and microtubule (thin line, where both the plus and the minus ends are shown).

Similar content being viewed by others

References

  1. Vale, R.D., Reese, T.S. & Sheetz, M.P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brady, S.T. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73–75 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Scholey, J.M., Porter, M.E., Grissom, P.M. & McIntosh, J.R. Identification of kinesin in sea urchin eggs and evidence for its localization in the mitotic spindle. Nature 318, 483–486 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Svoboda, K. & Block, S.M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Hackney, D.D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl. Acad. Sci. USA 91, 6865–6869 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Vale, R.D. & Milligan, R.A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Mandelkow, E. & Johnson, K.A. The structural and mechanochemical cycle of kinesin. Trends Biochem. Sci. 23, 429–433 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Uemura, S. et al. Kinesin-microtubule binding depends on both nucleotide state and loading direction. Proc. Natl. Acad. Sci. USA 99, 5977–5981 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kawaguchi, K. & Ishiwata, S. Nucleotide-dependent single- to double-headed binding of kinesin. Science 291, 667–669 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Kawaguchi, K., Uemura, S. & Ishiwata, S. Equilibrium and transition between single- and double-headed binding of kinesin as revealed by single-molecule mechanics. Biophys. J. 84, 1103–1113 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hancock, W.O. & Howard, J. Kinesin's processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proc. Natl. Acad. Sci. USA 96, 13147–13152 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Derenyi, I. & Vicsek, T. The kinesin walk: a dynamic model with elastically coupled head. Proc. Natl. Acad. Sci. USA 93, 6775–6779 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cross, R.A. et al. The conformational cycle of kinesin. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 459–464 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Crevel, I., Carter, N., Schliwa, M. & Cross, R. Coupled chemical and mechanical reaction steps in a processive Neurospora kinesin. EMBO J. 18, 5863–5872 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xing, J. et al. Kinesin has three nucleotide-dependent conformations. Implications for strain-dependent release. J. Biol. Chem. 275 35413–35423 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Ma, Y.Z. & Taylor, E.W. Kinetic mechanism of a monomeric kinesin construct. J. Biol. Chem. 272, 717–723 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Ma, Y.Z. & Taylor, E.W. Interacting head mechanism of microtubule-kinesin ATPase. J. Biol. Chem. 272, 724–730 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Askenasy, N. & Koretsky, A.P. Transgenic livers expressing mitochondrial and cytosolic CK: mitochondrial CK modulates free ADP levels. Am. J. Physiol. Cell Physiol. 282, C338–346 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Visscher, K., Schnitzer, M.J & Block, S.M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Nishiyama, M., Higuchi, H. & Yanagida, T. Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nat. Cell Biol. 4, 790–797 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Rief, M. et al. Myosin-V stepping kinetics: a molecular model for processivity. Proc. Natl. Acad. Sci. USA 97, 9482–9486 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schnitzer, M.J., Visscher, K. & Block, S.M. Force production by single kinesin motors. Nat. Cell Biol. 2, 718–723 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Veigel, C., Wang, F., Bartoo, M.C., Sellers, J.R. & Molloy, J.E. The gated gait of the processive molecular motor, myosin V. Nat. Cell Biol. 4, 59–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Spudich, J.A. & Rock, R.S. A crossbridge too far. Nat. Cell Biol. 4, E8–E10 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Kojima, H., Muto, E., Higuchi, H. & Yanagida, T. Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73, 2012–2022 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weingarten, M.D., Lockwood, A.H., Hwo, S.Y. & Kirschner, M.W. A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. USA 72, 1858–1862 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hyman, A.A. Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence. J. Cell Sci. s14, 125–127 (1991).

    Article  Google Scholar 

  30. Nishizaka, T., Miyata, H., Yoshikawa, H., Ishiwata, S. & Kinosita, K. Jr. Unbinding force of a single motor molecule of muscle measured using optical tweezers. Nature 377, 251–254 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S.S. Rosenfeld and M. Chee for critical reading of the manuscript. We also thank D.D. Hackney and K. Kinosita Jr. for valuable discussion. This research was partly supported by Grants-in-Aid for Specially Promoted Research and for the Bio-venture Project from the Ministry of Education, Sports, Culture, Science and Technology of Japan. S.U. is a recipient of predoctoral fellowship of the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin'ichi Ishiwata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uemura, S., Ishiwata, S. Loading direction regulates the affinity of ADP for kinesin. Nat Struct Mol Biol 10, 308–311 (2003). https://doi.org/10.1038/nsb911

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb911

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing