Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A HEX-1 crystal lattice required for Woronin body function in Neurospora crassa

Abstract

The Woronin body is a dense-core vesicle specific to filamentous ascomycetes (Euascomycetes), where it functions to seal the septal pore in response to cellular damage. The HEX-1 protein self-assembles to form this solid core of the vesicle. Here, we solve the crystal structure of HEX-1 at 1.8 Å, which provides the structural basis of its self-assembly. The structure reveals the existence of three intermolecular interfaces that promote the formation of a three-dimensional protein lattice. Consistent with these data, self-assembly is disrupted by mutations in intermolecular contact residues and expression of an assembly-defective HEX-1 mutant results in the production of aberrant Woronin bodies, which possess a soluble noncrystalline core. This mutant also fails to complement a hex-1 deletion in Neurospora crassa, demonstrating that the HEX-1 protein lattice is required for Woronin body function. Although both the sequence and the tertiary structure of HEX-1 are similar to those of eukaryotic initiation factor 5A (eIF-5A), the amino acids required for HEX-1 self-assembly and peroxisomal targeting are absent in eIF-5A. Thus, we propose that a new function has evolved following duplication of an ancestral eIF-5A gene and that this may define an important step in fungal evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of HEX-1 and eIF-5A.
Figure 2: Intermolecular interactions between HEX-1 molecules.
Figure 3: Molecular organization of the HEX-1 crystal lattice.
Figure 4: Requirement of crystal contact residues for HEX-1 assembly in vitro.
Figure 5: Requirement of crystal contact residues for HEX-1 function.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Jedd, G. & Chua, N.-H. A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat. Cell Biol. 2, 226–231 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Tenney, K. et al. Hex-1, a gene unique to filamentous fungi, encodes the major protein of the Woronin body and functions as a plug for septal pores. Fungal Genet. Biol. 31, 205–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Markham, P. & Collinge, A.J. Woronin bodies of filamentous fungi. FEMS Microbiol. Rev. 46, 1–11 (1987).

    Article  Google Scholar 

  4. Momany, M., Richardson, E.A., Van Sickle, C. & Jedd, G. Mapping Woronin body position in Aspergillus nidulans. Mycologia 94, 260–266 (2002).

    Article  PubMed  Google Scholar 

  5. Kyrpides, N.C. & Woese, C.R. Universally conserved translation initiation factors. Proc. Natl. Acad. Sci. USA 95, 224–228 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Holm, L. & Sander, C. Protein folds and families: sequence and structure alignments. Nucleic Acids Res. 27, 244–247 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peat, T.S., Newman, J.S., Waldo, G.S., Berenden, J. & Terwilliger, T.C. Structure of translation initiation factor 5A from Pyrobaculum aerophilum at 1.75 Å resolution. Structure 6, 1207–1214 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Kim, K.K., Hung, L.W., Yokota, H., Kim, R. & Kim, S.H. Crystal structures of eukaryotic translation initiation factor 5A from Methanococcus jannaschii at 1.8 Å resolution. Proc. Natl. Acad. Sci. USA 95, 10419–10424 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pearl, F.M. et al. Assigning genomic sequences to CATH. Nucleic Acids Res. 28, 277–282 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Orengo, C.A. et al. CATH — a hierarchic classification of protein domain structures. Structure 5, 1093–1108. (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Buller, A.H.R. Researches on Fungi Vol. V (Longmans, Green and Co., London; 1933).

    Google Scholar 

  12. Henrick, K. & Thornton, J.M. PQS: a protein quatrenary structure file server. Trends Biol. Sci. 23, 358–361 (1998).

    Article  CAS  Google Scholar 

  13. Elcock, A.H. & McCammon, J.A. Identification of protein oligomerization states by analysis of interface conservation. Proc. Natl. Acad. Sci. USA 98, 2990–2994 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Valdar, W.S. & Thornton, J.M. Conservation helps to identify biologically relevant crystal contacts. J. Mol. Biol. 313, 399–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Zuk, D. & Jacobson, A. A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. EMBO J. 17, 2914–2925 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hofmann, W. et al. Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin. J. Cell Biol. 152, 895–910 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rosorius, O. et al. Nuclear pore localization and nucleocytoplasmic transport of eIF-5A: evidence for direct interaction with the export receptor CRM1. J. Cell Sci. 112, 2369–2380 (1999).

    CAS  PubMed  Google Scholar 

  18. Schnier, J., Schwelberger, H.G., Smit-McBride, Z., Kang, H.A. & Hershey, J.W. Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 3105–3114 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chung, S.I., Park, M.H., Folk, J.E. & Lewis, M.S. Eukaryotic initiation factor 5A: the molecular form of the hypusine-containing protein from human erythrocytes. Biochim. Biophys. Acta 1076, 448–451 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Taylor, T.N., Hass, H. & Kerp, H. The oldest fossil ascomycetes. Nature 399, 648 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Berbee, M.L. & Taylor, J.W. Fungal molecular evolution: gene trees and geologic time. in The Mycota VII part B Systematics and Evolution (eds. McLaughlin, D.J., McLaughlin, E.G. & Lemke, P.A.) 229–245 (Springer-Verlag Berlin, Heidelberg; 2001).

    Google Scholar 

  22. Ohno, S. Evolution by Gene Duplication (Springer-Verlag, Berlin; 1970).

    Book  Google Scholar 

  23. Deacon, A.M. & Ealick, S.E. Selenium-based MAD phasing: setting the sites on larger structures. Structure 7, R161–R166 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Matthews, B.W. Solvent content of protein crystals. J. Mol. Biol. 33, 491–497 (1968).

    Article  CAS  PubMed  Google Scholar 

  25. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  26. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected using oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Furey, W. & Swaminathan, S. PHASES-95: a program package for the processing and analysis of diffraction data from macromolecules. Methods Enzymol. 277, 590–629 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Jones, T.A. & Kieldgaar, M. O: version 7.0 (Uppsala University, Uppsala; 2001).

    Google Scholar 

  30. Brunger, A.T. Crystallography & NMR system: a new software suit for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26 283–291 (1993).

    Article  CAS  Google Scholar 

  32. Guex, N. & Peitsch, M.C. SWISS-MODEL and the SWISS-PDBVIEWER — an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Esnouf, R.M. An extensively modified version of MOLSCRIPT that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–134 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Merritt, E.A. & Murphy, M.E.P. RASTER3D version 2.0 — a program for photorealistic molecular graphics. Acta. Crystallogr. D 50, 869–873 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Davis, R.H. & de Serres, F.J. Genetic and microbiological research techniques for Neurospora crassa. Methods Enzymol. 27, 79–143 (1970).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Saxena, R. Sweet, S.J. Sclafani and S. Eswaramoorthy of Brookhaven National Laboratory for data collection; J. Grotelueschen and R.L. Metzenberg for sharing the Poke-103 plasmid; G. Iyer for providing the hex-1 deletion in the pan-2 background; J.W. Taylor, M. Eck, H. Jing, Y. Yang, R. Meijer and A. Sali for useful suggestions and discussion; and D. Voet, R. Marmorstein, P. Duque and S. Oliferenko for reviewing the manuscript. This material is based upon work supported by the Agency for Science and Technology Research, Singapore, and The National Science Foundation, USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gregory Jedd or Kunchithapadam Swaminathan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, P., Jedd, G., Kumaran, D. et al. A HEX-1 crystal lattice required for Woronin body function in Neurospora crassa. Nat Struct Mol Biol 10, 264–270 (2003). https://doi.org/10.1038/nsb910

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb910

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing