Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure and function of MCM from archaeal M. Thermoautotrophicum

This article has been updated

Abstract

Eukaryotic chromosomal DNA is licensed for replication precisely once in each cell cycle. The mini-chromosome maintenance (MCM) complex plays a role in this replication licensing. We have determined the structure of a fragment of MCM from Methanobacterium thermoautotrophicum (mtMCM), a model system for eukaryotic MCM. The structure reveals a novel dodecameric architecture with a remarkably long central channel. The channel surface has an unusually high positive charge and binds DNA. We also show that the structure of the N-terminal fragment is conserved for all MCMs proteins despite highly divergent sequences, suggesting a common architecture for a similar task: gripping/remodeling DNA and regulating MCM activity. An mtMCM mutant protein equivalent to a yeast MCM5 (CDC46) protein with the bob1 mutation at its N terminus has only subtle structural changes, suggesting a Cdc7-bypass mechanism by Bob1 in yeast. Yeast bypass experiments using MCM5 mutant proteins support the hypothesis for the bypass mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of double-hexamer of N-mtMCM.
Figure 2: The fold and assembly of N-mtMCM.
Figure 3: Unique features of the channel of N-mtMCM and comparison of the channels between N-mtMCM, T7gp4 and PCNA.
Figure 4: Central channel of N-mtMCM double-hexamer and DNA binding.
Figure 5: The structural conservation of the N-terminal half of all MCMs and the structure of N-mtMCM mutant protein with a mutation at the conserved position corresponding to the yeast mcm5-bob1 mutation.
Figure 6: Yeast bypass results of mutations of MCM5 at Pro83 supporting the domain-push hypothesis for bob1 bypass mechanism.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 10 February 2003

    Corrected HTML, added footnote

Notes

  1. *Note: In the version of this article initially published online, this paper contained two mistakes. The first mistake is in the legend of Fig. 3b; the correct legend should read: "b, Side view of the N-mtMCM dodecamer showing the predominantly negatively charged (red) outer surface". The second mistake is in the first paragraph of page 5 (third line from the top); the correct sentence should read: "A surface charge calculation shows that the inner surface of the entire channel is strongly positive (Fig. 3c); in contrast, the outside surface is mostly negative (Fig. 3b)". This mistake has been corrected in the HTML and print versions of the article.

References

  1. Diffley, J.F. & Cocker, J.H. Protein–DNA interactions at a yeast replication origin. Nature 357, 169–172 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Walter, J. & Newport, J.W. Regulation of replicon size in Xenopus egg extracts. Science 275, 993–995 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Aparicio, O.M., Weinstein, D.M. & Bell, S.P. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91, 59–69 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Chong, J.P., Mahbubani, H.M., Khoo, C.Y. & Blow, J.J. Purification of an MCM-containing complex as a component of the DNA replication licensing system. Nature 375, 418–421 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Kubota, Y., Mimura, S., Nishimoto, S., Takisawa, H. & Nojima, H. Identification of the yeast MCM3-related protein as a component of Xenopus DNA replication licensing factor. Cell 81, 601–609 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Maiorano, D., Moreau, J. & Mechali, M. XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis. Nature 404, 622–625 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka, T., Knapp, D. & Nasmyth, K. Loading of an Mcm protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell 90, 649–660 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Yan, H., Merchant, A.M. & Tye, B.K. Cell cycle-regulated nuclear localization of MCM2 and MCM3, which are required for the initiation of DNA synthesis at chromosomal replication origins in yeast. Genes Dev. 7, 2149–2160 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Ishimi, Y. A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex. J. Biol. Chem. 272, 24508–24513 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Labib, K., Tercero, J.A. & Diffley, J.F. Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288, 1643–1647 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Lee, J.K. & Hurwitz, J. Processive DNA helicase activity of the minichromosome maintenance proteins 4, 6, and 7 complex requires forked DNA structures. Proc. Natl. Acad. Sci. USA 98, 54–59 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lei, M. & Tye, B.K. Initiating DNA synthesis: from recruiting to activating the MCM complex. J. Cell. Sci. 114, 1447–1454 (2001).

    CAS  PubMed  Google Scholar 

  13. Labib, K. & Diffley, J.F. Is the MCM2-7 complex the eukaryotic DNA replication fork helicase? Curr. Opin. Genet. Dev. 11, 64–70 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Tye, B.K. MCM proteins in DNA replication. Annu. Rev. Biochem. 68, 649–686 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Patel, S.S. & Picha, K.M. Structure and function of hexameric helicases. Annu. Rev. Biochem. 69, 651–697 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Schwacha, A. & Bell, S.P. Interactions between two catalytically distinct MCM subgroups are essential for coordinated ATP hydrolysis and DNA replication. Mol. Cell 8, 1093–1104 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Kelman, Z., Lee, J.K. & Hurwitz, J. The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum ΔH contains DNA helicase activity. Proc. Natl. Acad. Sci. USA 96, 14783–14788 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shechter, D.F., Ying, C.Y. & Gautier, J. The intrinsic DNA helicase activity of Methanobacterium thermoautotrophicum ΔH minichromosome maintenance protein. J. Biol. Chem. 275, 15049–15059 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Chong, J.P., Hayashi, M.K., Simon, M.N., Xu, R.M. & Stillman, B. A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc. Natl. Acad. Sci. USA 97, 1530–1535 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weinreich, M., Liang, C. & Stillman, B. The Cdc6p nucleotide-binding motif is required for loading MCM proteins onto chromatin. Proc. Natl. Acad. Sci. USA 96, 441–446 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grabowski, B. & Kelman, Z. Autophosphorylation of archaeal Cdc6 homologues is regulated by DNA. J. Bacteriol. 183, 5459–5464 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Simmons, D.T. SV40 large T antigen functions in DNA replication and transformation. Adv. Virus. Res. 55, 75–134 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Singleton, M.R., Sawaya, M.R., Ellenberger, T. & Wigley, D.B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589–600 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Kearsey, S.E. & Labib, K. MCM proteins: evolution, properties, and role in DNA replication. Biochim. Biophys. Acta 1398, 113–136 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Hardy, C.F., Dryga, O., Seematter, S., Pahl, P.M. & Sclafani, R.A. mcm5/cdc46-bob1 bypasses the requirement for the S phase activator Cdc7p. Proc. Natl. Acad. Sci. USA 94, 3151–3155 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Valle, M., Gruss, C., Halmer, L., Carazo, J.M. & Donate, L.E. Large T-antigen double hexamers imaged at the simian virus 40 origin of replication. Mol. Cell. Biol. 20, 34–41 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fanning, E. & Knippers, R. Structure and function of simian virus 40 large tumor antigen. Annu. Rev. Biochem. 61, 55–85 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Edwards, M.C. et al. MCM2-7 complexes bind chromatin in a distributed pattern surrounding ORC in Xenopus egg extracts. J. Biol. Chem. 277, 33049–33057 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Bochkarev, A., Bochkareva, E., Frappier, L. & Edwards, A.M. The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J. 18, 4498–4504 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Poplawski, A., Grabowski, B., Long, S.E. & Kelman, Z. The zinc finger domain of the archaeal minichromosome maintenance protein is required for helicase activity. J. Biol. Chem. 276, 49371–49377 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Yu, X. et al. The Methanobacterium thermoautotrophicum MCM protein can form heptameric rings. EMBO Rep. 3, 792–797 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Smelkova, N.V. & Borowiec, J.A. Dimerization of simian virus 40 T antigen hexamers activates T-antigen DNA helicase activity. J. Virol. 71, 8766–8773 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gulbis, J.M., Kelman, Z., Hurwitz, J., O'Donnell, M. & Kuriyan, J. Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 87, 297–306 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Mauguen, Y. et al. Molecular structure of a new family of ribonucleases. Nature 297, 162–164 (1982).

    Article  CAS  PubMed  Google Scholar 

  35. Spiller, B., Gershenson, A., Arnold, F.H. & Stevens, R.C. A structural view of evolutionary divergence. Proc. Natl. Acad. Sci. USA 96, 12305–12310 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Le Du, M.H., Stigbrand, T., Taussig, M.J., Menez, A. & Stura, E.A. Crystal structure of alkaline phosphatase from human placenta at 1.8 Å resolution. Implication for a substrate specificity. J. Biol. Chem. 276, 9158–9165 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Dalton, S. & Hopwood, B. Characterization of Cdc47p-minichromosome maintenance complexes in Saccharomyces cerevisiae: identification of Cdc45p as a subunit. Mol. Cell. Biol. 17, 5867–5875 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lei, M. et al. Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev. 11, 3365–3374 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jones, T.A., Zou, J.Y. & Cowen, S.W. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1990).

    Article  Google Scholar 

  40. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Aiyar, A., Xiang, Y. & Leis, J. Site-directed mutagenesis using overlap extension PCR. Methods Mol. Biol. 57, 177–191 (1996).

    CAS  PubMed  Google Scholar 

  42. Rothstein, R. Disruption, replacement and allele rescue: integrative DNA transformation in yeast. in Guide to Yeast Genetics and Molecular Biology (ed. Guthrie, C. & Fink, G.) 281–301 (Academic Press, San Diego; 1991).

    Chapter  Google Scholar 

  43. Sclafani, R.A., Tecklenburg, M. & Pierce, A. The mcm5-bob1 bypass of Cdc7p/Dbf4p in DNA replication depends on both Cdk1-independent and Cdk1-dependent steps in Saccharomyces cerevisiae. Genetics 161, 47–57 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kraulis, P.J. MOLSCRIPT — a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  45. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Harrison for comments on the manuscript, L. Pessoa-Brandão, R. Zhao, D. Li, T. Gould and L. Wilson for assistance and other members of the Chen group for comments and input; R. Zhang at 19id in Argonne National Laboratory (APS) and the staff at 14bmc in APS and X25 and X4A in Brookhaven National Laboratory for assistance in data collection; and the UCHSC X-ray center in Biomolecular Structure Program for support. This work is supported by start-up and cancer-center funds from UCHSC to X.C. and an NIH grant to R.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojiang S. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fletcher, R., Bishop, B., Leon, R. et al. The structure and function of MCM from archaeal M. Thermoautotrophicum. Nat Struct Mol Biol 10, 160–167 (2003). https://doi.org/10.1038/nsb893

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb893

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing