Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions

Abstract

Bacteriophage P22 is a prototypical biological machine used for studying protein complex assembly and capsid maturation. Using cryo-EM, we solved the structures of P22 before and after the capsid maturation at 8.5 Å and 9.5 Å resolutions, respectively. These structures allowed visualization of α-helices and β-sheets from which the capsid protein fold is derived. The capsid fold is similar to that of the coat protein of HK97 bacteriophage. The cryo-EM shows that a large conformational change of the P22 capsid during maturation transition involves not only the domain movement of individual subunits, but also refolding of the capsid protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure determination of P22.
Figure 2: Identification of secondary structures.
Figure 3: Structural comparison with HK97.
Figure 4: Stereo view of the molecular contacts of adjacent subunits in hexamer of the P22

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. King, J. & Chiu, W. The procapsid to capsid transition in double-stranded DNA bacteriophages. in Structural Biology of Viruses (eds. Chiu, W., Burnett, R.M. & Garcea, R.L.) 288–311 (Oxford Press, New York; 1997).

    Google Scholar 

  2. Prasad, B.V. et al. Three-dimensional transformation of capsids associated with genome packaging in a bacterial virus. J. Mol. Biol. 231, 65–74 (1993).

    Article  CAS  Google Scholar 

  3. Thuman-Commike, P.A. et al. Three-dimensional structure of scaffolding-containing phage P22 procapsids by electron cryo-microscopy. J. Mol. Biol. 260, 85–98 (1996).

    Article  CAS  Google Scholar 

  4. Thuman-Commike, P.A. et al. Mechanism of scaffolding-directed virus assembly suggested by comparison of scaffolding-containing and scaffolding-lacking P22 procapsids. Biophys. J. 76, 3267–3277 (1999).

    Article  CAS  Google Scholar 

  5. Zhang, Z. et al. Visualization of the maturation transition in bacteriophage P22 by electron cryomicroscopy. J. Mol. Biol. 297, 615–626 (2000).

    Article  CAS  Google Scholar 

  6. Newcomb, W.W. et al. The ul6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J. Virol. 75, 10923–10932 (2001).

    Article  CAS  Google Scholar 

  7. Steven, A.C. & Spear, P.G. Herpesvirus capsid assembly and envelopment. in Strucutural Biology of Viruses (eds. Chiu, W., Burnett, R.M. & Garcea, R.L.) 312–351 (Oxford University Press, New York; 1997).

    Google Scholar 

  8. Galisteo, M.L. & King, J. Conformational transformations in the protein lattice of phage P22 procapsids. Biophys. J. 65, 227–235 (1993).

    Article  CAS  Google Scholar 

  9. Jiang, W., Baker, M.L., Ludtke, S.J. & Chiu, W. Bridging the information gap: computational tools for intermediate resolution structure interpretation. J. Mol. Biol. 308, 1033–1044 (2001).

    Article  CAS  Google Scholar 

  10. Wikoff, W.R. et al. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289, 2129–2133 (2000).

    Article  CAS  Google Scholar 

  11. Kleywegt, G.J. & Jones, T.A. Detecting folding motifs and similarities in protein structures. Methods Enzymol. 277, 525–545 (1997).

    Article  CAS  Google Scholar 

  12. Reinisch, K.M., Nibert, M.L. & Harrison, S.C. Structure of the reovirus core at 3.6 Å resolution. Nature 404, 960–967 (2000).

    Article  CAS  Google Scholar 

  13. Zhou, Z.H. et al. Electron cryomicroscopy and bioinformatics suggest protein fold models for rice dwarf virus. Nat. Struct. Biol. 8, 868–873 (2001).

    Article  CAS  Google Scholar 

  14. Grimes, J.M. et al. The atomic structure of the bluetongue virus core. Nature 395, 470–477 (1998).

    Article  CAS  Google Scholar 

  15. Duda, R.L. Protein chainmail: catenated protein in viral capsids. Cell 94, 55–60 (1998).

    Article  CAS  Google Scholar 

  16. Duda, R.L., Martincic, K. & Hendrix, R.W. Genetic basis of bacteriophage HK97 prohead assembly. J. Mol. Biol. 247, 636–647 (1995).

    CAS  PubMed  Google Scholar 

  17. Conway, J.F., Duda, R.L., Cheng, N., Hendrix, R.W. & Steven, A.C. Proteolytic and conformational control of virus capsid maturation: the bacteriophage HK97 system. J. Mol. Biol. 253, 86–99 (1995).

    Article  CAS  Google Scholar 

  18. Caspar, D. & Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 1–24 (1962).

    Article  CAS  Google Scholar 

  19. Aramli, L.A. & Teschke, C.M. Single amino acid substitutions globally suppress the folding defects of temperature-sensitive folding mutants of phage P22 coat protein. J. Biol. Chem. 274, 22217–22224 (1999).

    Article  CAS  Google Scholar 

  20. Prevelige, P.E. Jr., Thomas, D., Aubrey, K.L., Towse, S.A. & Thomas, G.J. Jr. Subunit conformational changes accompanying bacteriophage P22 capsid maturation. Biochemistry 32, 537–543 (1993).

    Article  CAS  Google Scholar 

  21. Conway, J.F. et al. Virus maturation involving large subunit rotations and local refolding. Science 292, 744–748 (2001).

    Article  CAS  Google Scholar 

  22. Prevelige, P.E. Jr., Thomas, D. & King, J. Scaffolding protein regulates the polymerization of P22 coat subunits into icosahedral shells in vitro. J. Mol. Biol. 202, 743–757 (1988).

    Article  CAS  Google Scholar 

  23. Jiang, W. et al. Semi-automated icosahedral particle reconstruction at sub-nanometer resolution. J. Struct. Biol. 136, 214–225 (2001).

    Article  CAS  Google Scholar 

  24. Saad, A., Zhou, Z.H., Jakana, J., Chiu, W. & Rixon, F.J. Roles of triplex and scaffolding proteins in herpes simplex virus type 1 capsid formation suggested by structures of recombinant particles. J. Virol. 73, 6821–6830 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Crowther, R.A. Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 261, 221–230 (1971).

    Article  CAS  Google Scholar 

  26. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semi-automated software for high resolution single particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  Google Scholar 

  27. Zhou, Z.H. et al. Seeing the herpesvirus capsid at 8.5 Å. Science 288, 877–880 (2000).

    Article  CAS  Google Scholar 

  28. Harauz, G. & van Heel, M. Exact filters for general geometry three dimensional reconstruction. Optik 73, 146–156 (1986).

    Google Scholar 

  29. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997).

    Article  CAS  Google Scholar 

  30. Dougherty, M.T. & Chiu, W. Using animation to enhance 3D visualization: A strategy for a production and environment. Microsc. Microanal. 4 Suppl 2, 452–453 (1998).

    Google Scholar 

  31. He, J., Schmid, M.F., Zhou, Z.H., Rixon, F. & Chiu, W. Finding and using local symmetry in identifying lower domain movements in hexon subunits of the herpes simplex virus type 1 capsid. J. Mol. Biol. 309, 903–914 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. King and B. Green of MIT for providing the phage sample for an earlier investigation. This research has been supported by grants from National Institute of Allergy and Infectious Diseases, National Center for Research Resources, National Institute of General Medical Science, the National Library of Medicine training grant and the Agouron Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wah Chiu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, W., Li, Z., Zhang, Z. et al. Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions. Nat Struct Mol Biol 10, 131–135 (2003). https://doi.org/10.1038/nsb891

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing