Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Active site electronic structure and dynamics during metalloenzyme catalysis

Abstract

Zinc-dependent enzymes play important roles in many cellular processes. Assignment of their reaction mechanisms is often a subject of debate because the zinc ion is silent in several spectroscopic techniques. We have combined time-resolved X-ray absorption spectroscopy, pre-steady state kinetics and computational quantum chemistry to study the active site zinc ion of bacterial alcohol dehydrogenase during single substrate turnover. We detect a series of alternations in the coordination number and structure of the catalytic zinc ion with concomitant changes in metal–ligand bond distances. These structural changes are reflected in the effective charge of the metal ion. The present work emphasizes the flexibility of catalytic zinc sites during catalysis and provides novel mechanistic insights into alcohol dehydrogenase catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The catalytic site in the TbADH–NADP+ complex (PDB entry 1YKF).
Figure 2: Time-resolved freeze-quenched XAS of TbADH during a single catalytic cycle.
Figure 3: Real-time changes in the effective charge of the catalytic zinc ion during TbADH catalysis.
Figure 4: Proposed structural events around the catalytic zinc ion in TbADH within the context of the reaction mechanism of the oxidation of secondary alcohols.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Auld, D.S. Zinc coordination sphere in biochemical zinc sites. Biometals 14, 271–313 (2001).

    Article  CAS  Google Scholar 

  2. Karlin, K.D. Metalloenzymes, structural motifs, and inorganic models. Science 261, 701–708 (1993).

    Article  CAS  Google Scholar 

  3. Oestreicher, E.G., Pereira, D.A. & Pinto, G.F. Steady-state kinetic mechanism of Thermoanaerobacter brockii alcohol dehydrogenase: a study discrimination between alternative kinetic models. J. Biotechnol. 46, 23–31 (1996).

    Article  CAS  Google Scholar 

  4. al-Kassim, L.S. & Tsai, C.S. Studies of NADP+-preferred secondary alcohol dehydrogenase from Thermoanaerobium brockii. Biochem. Cell Biol. 68, 907–913 (1990).

    Article  CAS  Google Scholar 

  5. Korkhin, Y. et al. NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. J. Mol. Biol. 278, 967–981 (1998).

    Article  CAS  Google Scholar 

  6. Kleifeld, O. et al. Spectroscopic studies of inhibited alcohol dehydrogenase from Thermoanaerobacter brockii: proposed structure for the catalytic intermediate state. Biochemistry 39, 7702–7711 (2000).

    Article  CAS  Google Scholar 

  7. Dworschack, R.T. & Plapp, B.V. Kinetics of native and activated isozymes of horse liver alcohol dehydrogenase. Biochemistry 16, 111–116 (1977).

    Article  CAS  Google Scholar 

  8. Dunn, M.F., Biellmann, J.F. & Branlant, G. Roles of zinc ion and reduced coenzyme in horse liver alcohol dehydrogenase catalysis. The mechanism of aldehyde activation. Biochemistry 14, 3176–3182 (1975).

    Article  CAS  Google Scholar 

  9. Makinen, M.W., Maret, W. & Yim, M.B. Neutral metal-bound water is the base catalyst in liver alcohol dehydrogenase. Proc. Natl. Acad. Sci. USA 80, 2584–2588 (1983).

    Article  CAS  Google Scholar 

  10. Meijers, R. et al. On the enzymatic activation of NADH. J. Biol. Chem. 276, 9316–9321 (2001).

    Article  CAS  Google Scholar 

  11. Dunn, M.F., MacGibbon, A.K.H. & Pease, K. Liver alcohol dehydrogenase:electrostatic strain-distortion effects facilitate hydride ion transfer. in Zinc Enzymes, Vol. 1 (eds. Bertini, I., Luchinat, C., Maret, W. & Zeppezauer, M.) 378–534 (Birkhauser Boston, Boston; 1986).

    Google Scholar 

  12. Eklund, H., Plapp, B.V., Samama, J.P. & Branden, C.I. Binding of substrate in a ternary complex of horse liver alcohol dehydrogenase. J. Biol. Chem. 257, 14349–14358 (1982).

    CAS  PubMed  Google Scholar 

  13. Powers, L., Sessler, L., Woolery, G.L. & Chance, B. CO bond angle changes in photolysis of carboxymyoglobin. Biochemistry 23, 5519–5523 (1984).

    Article  CAS  Google Scholar 

  14. Scheuring, E.M. et al. Time-resolved X-ray absorption spectroscopy of photoreduced base-off Cob(II)alamin compared to the Co(II) species in Clostridium thermoaceticum. J. Phys. Chem. 100, 3344–3348 (1996).

    Article  CAS  Google Scholar 

  15. Chance, M.R. et al. Global mapping of structural solutions provided by the extended X-ray absorption fine structure ab initio code FEFF 6.01: structure of the cryogenic photoproduct of the myoglobin-carbon monoxide complex. Biochemistry 35, 9014–9023 (1996).

    Article  CAS  Google Scholar 

  16. Riggs-Gelasco, P. et al. EXAFS characterization of the intermediate X generated during the assembly of the E. coli ribonucleotide reductase R2 diferric tyrosyl radical cofactor. J. Am. Chem. Soc. 120, 849–860 (1998).

    Article  CAS  Google Scholar 

  17. Hwang, J. et al. A short Fe-Fe distance in peroxodiferric ferritin: control of Fe substrate versus cofactor decay? Science 287, 122–125 (2000).

    Article  CAS  Google Scholar 

  18. Lee, S.K. et al. Nature of the intermediate formed in the reduction of O2 to H2O at the trinuclear copper cluster active site in native laccase. J. Am. Chem. Soc. 124, 6180–6193 (2002).

    Article  CAS  Google Scholar 

  19. Fersht, A. The basic equations of enzyme kinetics. in Structure and Mechanism in Protein Science (eds. Julet, M.R. & Hadler, G.L.) 103–131 (W.H. Freeman, New York; 1999).

    Google Scholar 

  20. Frenkel, A., Kleifeld, O., Wasserman, S.R. & Sagi, I. Phase speciation by extended X-ray-absorption fine structure spectroscopy. J. Chem. Phys. 116, 9449–9456 (2002).

    Article  CAS  Google Scholar 

  21. Zabinsky, S.I., Rehr, J.J., Ankudinov A., Albers R.C. & Eller M.J. Multiple scattering calculations of X-ray absorption spectra. Phys. Rev. B 52, 2995–3009 (1995).

    Article  CAS  Google Scholar 

  22. Frieden, C. Slow transitions and hysteretic behavior in enzymes. Ann. Rev. Biochem. 48, 471–489 (1979).

    Article  CAS  Google Scholar 

  23. Bianconi, A. XANES spectroscopy. in X-Ray Absorption, Vol. 92 (eds. Koningsberger, D.C. & Prins, R.) 573–662 (John Wiley & Sons, New York; 1988).

    Google Scholar 

  24. Maret, W. & Makinen, M.W. The pH variation of steady-state kinetic parameters of site-specific Co2+-reconstituted liver alcohol dehydrogenase a mechanistic probe for the assignment of metal-linked inoziations. J. Biol. Chem. 266, 20636–20644 (1991).

    CAS  PubMed  Google Scholar 

  25. Cioslowski, J. A new population analysis based on atomic polar tensors. J. Am. Chem. Soc. 111, 8333–8336 (1989).

    Article  CAS  Google Scholar 

  26. Reed, A.E., Curtiss, L.A. & Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88, 899–926 (1988).

    Article  CAS  Google Scholar 

  27. Ryde, U. On the role of Glu68 in alcohol dehydrogenase. Protein Sci. 4, 1124–1132 (1995).

    Article  CAS  Google Scholar 

  28. Yang, Z.N., Bosron, W.F. & Hurley, T.D. Structure of human chi chi alcohol dehydrogenase: a glutathione-dependent formaldehyde dehydrogenase. J. Mol. Biol. 265, 330–343 (1997).

    Article  CAS  Google Scholar 

  29. Bogin, O., Peretz, M. & Burstein, Y. Thermoanaerobacter brockii alcohol dehydrogenase: characterization of the active site metal and its ligand amino acids. Protein Sci. 6, 450–458 (1997).

    Article  CAS  Google Scholar 

  30. Appleyard, R.J., Shuttleworth, W.A. & Evans, J.N. Time-resolved solid-state NMR spectroscopy of 5-enolpyruvylshikimate-3-phosphate synthase. Biochemistry 33, 6812–6821 (1994).

    Article  CAS  Google Scholar 

  31. Stern, E.A., Newville, M., Ravel, B., Yacoby, Y. & Haskel, D. The UWXAFS analysis package: philosophy and details. Physica B 208-209, 117–120 (1995).

    Article  Google Scholar 

  32. Rehr, J.J., Mustre de Leon, J., Zabinsky, S.I. & Albers, R.C. Theoretical X-ray absorption fine structure standards. J. Am. Chem. Soc. 113, 5135–5140 (1991).

    Article  CAS  Google Scholar 

  33. Frisch, M.J. et al. Gaussian 98. (Rev. A.11) (Gaussian, Inc., Pittsburgh; 2001).

Download references

Acknowledgements

We thank M. Sullivan from the NSLS beam line X9B, K. Zhang and S. Stepanov from the APS the BioCat beamline and G. Kafri and E. Yavin from the Weizmann Institute for their help and technical advice. The authors are grateful to M.W. Makinen for critically reading this manuscript. This work was supported by the Israeli Science Foundation (I.S.) and by the Minerva Foundation (J.M.L.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irit Sagi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleifeld, O., Frenkel, A., Martin, J. et al. Active site electronic structure and dynamics during metalloenzyme catalysis. Nat Struct Mol Biol 10, 98–103 (2003). https://doi.org/10.1038/nsb889

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb889

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing