Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Creation of a zymogen

Abstract

Cells produce proteases as inactive zymogens. Here, we demonstrate that this tactic can extend beyond proteases. By linking the N and C termini of ribonuclease A, we obstruct the active site with the amino acid sequence recognized by plasmepsin II, a highly specific protease from Plasmodium falciparum. We generate new N and C termini by circular permutation. In the presence of plasmepsin II, a ribonuclease zymogen gains 103-fold in catalytic activity and maintains high conformational stability. We conclude that zymogen creation provides a new and versatile strategy for the control of enzymatic activity, as well as the potential development of chemotherapeutic agents.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of a ribonuclease zymogen.
Figure 2: Activation of ribonuclease A zymogen with 88/89 termini.
Figure 3: Optimization of ribonuclease A zymogen.
Figure 4

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Von Der Helm, K., Korant, B.D. & Cheronis, J.C. Proteases as Targets for Therapy. (Springer-Verlag, Heidelberg; 2000).

    Book  Google Scholar 

  2. Smith, J. & Simons, C. Proteinase and Peptidase Inhibition: Recent Potential Targets for Drug Development. (Taylor & Francis, London; 2002).

    Google Scholar 

  3. Kühne, W. Ueber die verdauung der eiweissstoffe durch den pankreassaft. Virchows Arch. 39, 130–174 (1867).

    Article  Google Scholar 

  4. Khan, A.R. & James, M.N.G. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci. 7, 815–836 (1998).

    Article  CAS  Google Scholar 

  5. Laskowski, M. Jr., Qasim, M.A. & Lu, S.M. Interaction of standard mechanism, canonical protein inhibitors with serine proteases. in Protein–Protein Recognition (ed. Kleanthous, C.) 228–279 (Oxford University Press, Oxford; 2000).

    Google Scholar 

  6. Lazure, C. The peptidase zymogen proregions: Nature's way of preventing undesired activation and proteolysis. Curr. Pharm. Des. 8, 509–529 (2002).

    Article  Google Scholar 

  7. Leland, P.A. & Raines, R.T. Cancer chemotherapy — ribonucleases to the rescue. Chem. Biol. 8, 405–413 (2001).

    Article  CAS  Google Scholar 

  8. Kleanthous, C. & Pommer, A.J. Nuclease inhibitors. in Protein–Protein Recognition (ed. Kleanthous, C.) 280–311 (Oxford University Press, Oxford; 2000).

    Google Scholar 

  9. D'Alessio, G. & Riordan, J.F. Ribonucleases: Structures and Functions. (Academic Press, New York; 1997).

    Google Scholar 

  10. Raines, R.T. Ribonuclease A. Chem. Rev. 98, 1045–1065 (1998).

    Article  CAS  Google Scholar 

  11. Goldenberg, D.P. & Creighton, T.E. Circular and circularly permuted forms of bovine pancreatic trypsin inhibitor. J. Mol. Biol. 165, 407–413 (1983).

    Article  CAS  Google Scholar 

  12. Todd, A.E., Orengo, C.A. & Thornton, J.M. Plasticity of enzyme active sites. Trends Biochem. Sci. 27, 419–426 (2002).

    Article  CAS  Google Scholar 

  13. Grishin, N.V. Fold change in evolution of protein structures. J. Struct. Biol. 134, 167–185 (2001).

    Article  CAS  Google Scholar 

  14. Silva, A.M. et al. Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 93, 10034–10039 (1996).

    Article  CAS  Google Scholar 

  15. Klemba, M. & Goldberg, D.E. Biological roles of proteases in parasitic protozoa. Annu. Rev. Biochem. 7, 275–305 (2002).

    Article  Google Scholar 

  16. Goldberg, D.E. et al. Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: a catabolic pathway initiated by a specific aspartic protease. J. Exp. Med. 173, 961–969 (1991).

    Article  CAS  Google Scholar 

  17. Francis, S.E., Sullivan, D.J. Jr. & Goldberg, D.E. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu. Rev. Microbiol. 51, 97–123 (1997).

    Article  CAS  Google Scholar 

  18. Francis, S.E., Banerjee, R. & Goldberg, D.E. Biosynthesis and maturation of the malaria aspartic hemoglobinases plasmepsins I and II. J. Biol. Chem. 272, 14961–14968 (1997).

    Article  CAS  Google Scholar 

  19. Bernstein, N.K., Cherney, M.M., Loetscher, H., Ridley, R.G. & James, M.N. Crystal structure of the novel aspartic proteinase zymogen proplasmepsin II from Plasmodium falciparum. Nat. Struct. Biol. 6, 32–37 (1999).

    Article  CAS  Google Scholar 

  20. Klink, T.A. & Raines, R.T. Conformational stability is a determinant of ribonuclease A cytotoxicity. J. Biol. Chem. 275, 17463–17467 (2000).

    Article  CAS  Google Scholar 

  21. delCardayré, S.B. et al. Engineering ribonuclease A: production, purification, and characterization of wild-type enzyme and mutants at Gln11. Protein Eng. 8, 261–273 (1995).

    Article  Google Scholar 

  22. Leland, P.A., Schultz, L.W., Kim, B.M. & Raines, R.T. Ribonuclease A variants with potent cytotoxic activity. Proc. Natl. Acad. Sci. USA 95, 10407–10412 (1998).

    Article  CAS  Google Scholar 

  23. Parsell, D.A. & Sauer, R.T. The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. J. Biol. Chem. 264, 7590–7595 (1989).

    CAS  Google Scholar 

  24. Bretscher, L.E., Abel, R.L. & Raines, R.T. A ribonuclease A variant with low catalytic activity but high cytotoxicity. J. Biol. Chem. 275, 9893–9896 (2000).

    Article  CAS  Google Scholar 

  25. Fawell, S. et al. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA 91, 664–668 (1994).

    Article  CAS  Google Scholar 

  26. Haigis, M.C., Kurten, E.L., Abel, R.L. & Raines, R.T. KFERQ sequence in ribonuclease A-mediated cytotoxicity. J. Biol. Chem. 277, 11576–11581 (2002).

    Article  CAS  Google Scholar 

  27. Leland, P.A., Staniszewski, K.E., Kim, B.M. & Raines, R.T. Endowing human pancreatic ribonuclease with toxicity for cancer cells. J. Biol. Chem. 276, 43095–43102 (2001).

    Article  CAS  Google Scholar 

  28. Mikulski, S.M. et al. Phase II trial of a single weekly intravenous does of ranpirnase in patients with unresectable malignant mesothelioma. J. Clin. Oncol. 20, 274–281 (2002).

    Article  CAS  Google Scholar 

  29. Wlodawer, A., Svensson, L.A., Sjölin, L. & Gilliland, G.L. Structure of phosphate-free ribonuclease A refined at 1.26 Å. Biochemistry 27, 2705–2717 (1988).

    Article  CAS  Google Scholar 

  30. Westling, J. et al. Plasmodium falciparum, P. vivax and P. malariae: a comparison of the active site properties of plasmepsins cloned and expressed from three different species of the malaria parasite. Exp. Parasitol. 87, 185–193 (1997).

    Article  CAS  Google Scholar 

  31. Hill, J. et al. High level expression and characterisation of Plasmepsin II, an aspartic proteinase from Plasmodium falciparum. FEBS Lett. 352, 155–158 (1994).

    Article  CAS  Google Scholar 

  32. Kelemen, B.R. et al. Hypersensitive substrate for ribonucleases. Nucleic Acids Res. 27, 3696–3701 (1999).

    Article  CAS  Google Scholar 

  33. Klink, T.A., Woycechowsky, K.J., Taylor, K.M. & Raines, R.T. Contribution of disulfide bonds to the conformational stability and catalytic activity of ribonuclease A. Eur. J. Biochem. 267, 566–572 (2000).

    Article  CAS  Google Scholar 

  34. Westling, J. et al. Active site specificity of plasmepsin II. Protein Sci. 8, 2001–2009 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Park and D.H. Rich for contributive discussions, and B.M. Dunn for a plasmpesin II expression system. P.P. was supported by the Asian Partnership Initiative of Mahidol University and the University of Wisconsin, Madison. S.M.F. was supported by a Biotechnology Training Grant from the NIH. This work was supported by a grant to R.T.R. from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald T. Raines.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plainkum, P., Fuchs, S., Wiyakrutta, S. et al. Creation of a zymogen. Nat Struct Mol Biol 10, 115–119 (2003). https://doi.org/10.1038/nsb884

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb884

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing