Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Allosteric inhibition via R-state destabilization in ATP sulfurylase from Penicillium chrysogenum

Abstract

The structure of the cooperative hexameric enzyme ATP sulfurylase from Penicillium chrysogenum bound to its allosteric inhibitor, 3′-phosphoadenosine-5′-phosphosulfate (PAPS), was determined to 2.6 Å resolution. This structure represents the low substrate-affinity T-state conformation of the enzyme. Comparison with the high substrate-affinity R-state structure reveals that a large rotational rearrangement of domains occurs as a result of the R-to-T transition. The rearrangement is accompanied by the 17 Å movement of a 10-residue loop out of the active site region, resulting in an open, product release-like structure of the catalytic domain. Binding of PAPS is proposed to induce the allosteric transition by destabilizing an R-state-specific salt linkage between Asp 111 in an N-terminal domain of one subunit and Arg 515 in the allosteric domain of a trans-triad subunit. Disrupting this salt linkage by site-directed mutagenesis induces cooperative inhibition behavior in the absence of an allosteric effector, confirming the role of these two residues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hexameric arrangement of ATP sulfurylase subunits in the R- and T-states.
Figure 2: Conformational changes observed in the R-to-T allosteric transition.
Figure 3: Allosteric inhibitor-binding site.
Figure 4: Velocity versus substrate concentration of the R515A mutant.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. MacRae, I. & Segel, I.H. Arch. Biochem. Biophys. 337, 17–26 (1997).

    Article  CAS  Google Scholar 

  2. Renosto, F., Martin, R.L., Wailes, L.M., Daley, L.A. & Segel, I.H. J. Biol. Chem. 265, 10300–10308 (1990).

    CAS  PubMed  Google Scholar 

  3. MacRae, I.J., Segel, I.H. & Fisher, A.J. Biochemistry 40, 6795–6804 (2001).

    Article  CAS  Google Scholar 

  4. Foster, B.A. et al. J. Biol. Chem. 269, 19777–19786 (1994).

    CAS  PubMed  Google Scholar 

  5. Monod, J., Wyman, J. & Changeux, J.-P. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  6. Lipscomb, W.N. Adv. Enzymol. Relat. Areas Mol. Biol. 68, 67–151 (1994).

    CAS  PubMed  Google Scholar 

  7. Deyrup, A.T., Singh, B., Krishnan, S., Lyle, S. & Schwartz, N.B. J. Biol. Chem. 274, 28929–28936 (1999).

    Article  CAS  Google Scholar 

  8. Venkatachalam, K.V., Fuda, H., Koonin, E.V. & Strott, C.A. J. Biol. Chem. 274, 2601–2604 (1999).

    Article  CAS  Google Scholar 

  9. Serrano, L. & Fersht, A.R. Nature 342, 296–299 (1989).

    Article  CAS  Google Scholar 

  10. Beynon, J.D. et al. Biochemistry 40, 14509–14517 (2001).

    Article  CAS  Google Scholar 

  11. Ullrich, T.C. & Huber, R. J. Mol. Biol. 313, 1117–1125 (2001).

    Article  CAS  Google Scholar 

  12. Ullrich, T.C., Blaesse, M. & Huber, R. EMBO J. 20, 316–329 (2001).

    Article  CAS  Google Scholar 

  13. MacRae, I.J., Hanna, E., Ho, J.D., Fisher, A.J. & Segel, I.H. J. Biol. Chem. 275, 36303–36310 (2000).

    Article  CAS  Google Scholar 

  14. Medina, D.C., Hanna, E., MacRae, I.J., Fisher, A.J. & Segel, I.H. Arch. Biochem. Biophys. 393, 51–60 (2001).

    Article  CAS  Google Scholar 

  15. Lu, G., Williams, M.K., Giroux, E.L. & Kantrowitz, E.R. Biochemistry 34, 13272–13277 (1995).

    Article  CAS  Google Scholar 

  16. Dembowski, N.J., Newton, C.J. & Kantrowitz, E.R. Biochemistry 29, 3716–3723 (1990).

    Article  CAS  Google Scholar 

  17. Williams, M.K., Stec, B. & Kantrowitz, E.R. J. Mol. Biol. 281, 121–134 (1998).

    Article  CAS  Google Scholar 

  18. Williams, M.K. & Kantrowitz, E.R. Biochim. Biophys. Acta 1429, 249–258 (1998).

    Article  CAS  Google Scholar 

  19. Sakash, J.B. & Kantrowitz, E.R. J. Biol. Chem. 275, 28701–28707 (2000).

    Article  CAS  Google Scholar 

  20. Schmidheini, T., Mosch, H.U., Evans, J.N. & Braus, G. Biochemistry 29, 3660–3668 (1990).

    Article  CAS  Google Scholar 

  21. Stevens, R.C. & Lipscomb, W.L. in Oxford Science Publications; Molecular Structures in Biology (eds Diamond, R., Koetzle, T.F., Prout, K. & Richardson, J.S.) 223–259 (Oxford University Press, Oxford; 1993).

    Google Scholar 

  22. Kantrowitz, E.R. & Lipscomb, W.N. Trends Biochem. Sci. 15, 53–59 (1990).

    Article  CAS  Google Scholar 

  23. Horjales, E., Altamirano, M.M., Calcagno, M.L., Garratt, R.C. & Oliva, G. Structure 7, 527–537 (1999).

    Article  CAS  Google Scholar 

  24. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  25. Kissinger, C.R., Gehlhaar, D.K. & Fogel, D.B. Acta Crystallogr. D 55, 484–491 (1999).

    Article  CAS  Google Scholar 

  26. Brünger, A.T. Acta Crystallogr. D 49, 24–36 (1993).

    Article  Google Scholar 

  27. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  28. Segel, I.H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems. (Wiley-Interscience, New York; 1993).

    Google Scholar 

Download references

Acknowledgements

The research described in this report was supported by an NSF Research Grant to I.H.S. and A.J.F. and by facilities of the W.M. Keck Foundation Center for Structural Biology at the University of California, Davis. Some of the work reported here was performed at SSRL, which is operated by the Department of Energy, Office of Basic Energy Sciences. The SSRL Biotechnology Program is supported by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program, and by the Department of Energy, Office of Biological and Environmental Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Fisher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacRae, I., Segel, I. & Fisher, A. Allosteric inhibition via R-state destabilization in ATP sulfurylase from Penicillium chrysogenum. Nat Struct Mol Biol 9, 945–949 (2002). https://doi.org/10.1038/nsb868

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb868

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing