Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification and analysis of a bottleneck in PCB biodegradation

This article has been updated

Abstract

The microbial degradation of polychlorinated biphenyls (PCBs) provides the potential to destroy these widespread, toxic and persistent environmental pollutants. For example, the four-step upper bph pathway transforms some of the more than 100 different PCBs found in commercial mixtures and is being engineered for more effective PCB degradation. In the critical third step of this pathway, 2,3-dihydroxybiphenyl (DHB) 1,2-dioxygenase (DHBD; EC 1.13.11.39) catalyzes aromatic ring cleavage. Here we demonstrate that ortho-chlorinated PCB metabolites strongly inhibit DHBD, promote its suicide inactivation and interfere with the degradation of other compounds. For example, kcatapp for 2′,6′-diCl DHB was reduced by a factor of 7,000 relative to DHB, and it bound with sufficient affinity to competitively inhibit DHB cleavage at nanomolar concentrations. Crystal structures of two complexes of DHBD with ortho-chlorinated metabolites at 1.7 Å resolution reveal an explanation for these phenomena, which have important implications for bioremediation strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DHBD-catalyzed ring-cleavage reaction and its inhibition
Figure 2: Illustrations of ortho-chlorinated DHBs bound to the active site of DHBD.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 11 November 2002

    Appended PDF with errata, figure legend updated

Notes

  1. *Note: Due to a mistake that occurred during production of this manuscript, the units for two values reported in the legend of Fig. 1 were incorrect. The correct unit for KiAapp in the legend for Fig. 1b is mM (KiAapp = 2.7 ±0.6 mM), whereas the concentration range of 2-Cl DHB for Fig. 1b insert is µM (0–50 µM). This mistake has been corrected in the HTML version and will appear correctly in print. The PDF for the AOP version of this paper has been appended.

References

  1. Furukawa, K. Curr. Opin. Biotechnol. 11, 244–249 (2000).

    Article  CAS  Google Scholar 

  2. Abramowicz, D.A. Crit. Rev. Biotechnol. 10, 241–251 (1990).

    Article  CAS  Google Scholar 

  3. Bopp, L.H. J. Ind. Microbiol. 1, 23–29 (1986).

    Article  CAS  Google Scholar 

  4. Suenaga, H., Watanabe, T., Sato, M., Ngadiman & Furukawa, K. J. Bacteriol. 184, 3682–3688 (2002).

    Article  CAS  Google Scholar 

  5. Barriault, D., Plante, M.M. & Sylvestre, M. J. Bacteriol. 184, 3794–3800 (2002).

    Article  CAS  Google Scholar 

  6. Furukawa, K., Tomizuka, N. & Kamibayashi, A. Appl. Environ. Microbiol. 35, 223–227 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Seeger, M., Timmis, K.N. & Hofer, B. Appl. Environ. Microbiol. 61, 2654–2658 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Seah, S.Y. et al. J. Biol. Chem. 275, 15701–15708 (2000).

    Article  CAS  Google Scholar 

  9. Vaillancourt, F.H., Han, S., Fortin, P.D., Bolin, J.T. & Eltis, L.D. J. Biol. Chem. 273, 34887–34895 (1998).

    Article  CAS  Google Scholar 

  10. Vaillancourt, F.H., Labbe, G., Drouin, N.M., Fortin, P.D. & Eltis, L.D. J. Biol. Chem. 277, 2019–2027 (2002).

    Article  CAS  Google Scholar 

  11. Bugg, T.D.H. & Lin, G. Chem. Commun. (Camb.) 11, 941–952 (2001).

    Article  Google Scholar 

  12. Maltseva, O.V., Tsoi, T.V., Quensen, J.F. III, Fukuda, M. & Tiedje, J.M. Biodegradation 10, 363–371 (1999).

    Article  CAS  Google Scholar 

  13. Han, S., Eltis, L.D., Timmis, K.N., Muchmore, S.W. & Bolin, J.T. Science 270, 976–980 (1995).

    Article  CAS  Google Scholar 

  14. Vaillancourt, F.H. et al. J. Am. Chem. Soc. 124, 2485–2496 (2002).

    Article  CAS  Google Scholar 

  15. Uragami, Y. et al. J. Inorg. Biochem. 83, 269–279 (2001).

    Article  CAS  Google Scholar 

  16. Bolin, J.T. & Eltis, L.D. in Handbook of Metalloenzymes (eds Messerschmidt, A., Huber, R., Poulos, T. & Wieghardt, K.) 632–642 (John Wiley & Sons, Chichester; 2001).

    Google Scholar 

  17. Chauhan, K.R., Kodavanti, P.R. & McKinney, J.D. Toxicol. Appl. Pharmacol. 162, 10–21 (2000).

    Article  CAS  Google Scholar 

  18. van der Plas, S.A. et al. Toxicol. Appl. Pharmacol. 169, 255–268 (2000).

    Article  CAS  Google Scholar 

  19. Arcaro, K.F. et al. J. Cell. Biochem. 72, 94–102 (1999).

    Article  CAS  Google Scholar 

  20. Korte, N.E. et al. Waste Manag. (Oxford) 22, 343–349 (2002).

    Article  CAS  Google Scholar 

  21. Weber, R. et al. Chemosphere 46, 1255–1262 (2002).

    Article  CAS  Google Scholar 

  22. Wiegel, J. & Wu, Q. FEMS Microbiol. Ecol. 32, 1–15 (2000).

    Article  CAS  Google Scholar 

  23. Furukawa, K., Tomizuka, N. & Kamibayashi, A. Appl. Environ. Microbiol. 38, 301–310 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Master, E.R., Lai, V.W., Kuipers, B., Cullen, W.R. & Mohn, W.W. Environ. Sci. Technol. 36, 100–103 (2002).

    Article  CAS  Google Scholar 

  25. Nerdinger, S. et al. Chem. Commun. (Camb.) 22, 2259–2260 (1999).

    Article  Google Scholar 

  26. Cornish-Bowden, A. Analysis of Enzyme Kinetic Data (Oxford University Press, Oxford, New York; 1995).

    Google Scholar 

  27. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  28. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  29. Dodson, E.J., Winn, M. & Ralph, A. Methods Enzymol. 277, 620–633 (1997).

    Article  CAS  Google Scholar 

  30. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  31. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  32. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  33. Esnouf, R.M. J. Mol. Graph. Model. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  34. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a Strategic grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) and an award from the U.S. National Institutes of Health (NIH). Use of the Argonne National Laboratory Structural Biology Center beamlines at the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Biological and Environmental Research. F.H.V. was the recipient of an NSERC postgraduate scholarship. D.B.N. was supported in part by an NIH institutional training award. S. He, G. Labbé and W. Minor are thanked for their expert assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeffrey T. Bolin or Lindsay D. Eltis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, S., Vaillancourt, F., Maaroufi, H. et al. Identification and analysis of a bottleneck in PCB biodegradation. Nat Struct Mol Biol 9, 934–939 (2002). https://doi.org/10.1038/nsb866

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb866

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing