Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients

Abstract

Pseudomonas aeruginosa galactose- and fucose-binding lectins (PA-IL and PA-IIL) contribute to the virulence of this pathogenic bacterium, which is a major cause of morbidity and mortality in cystic fibrosis patients. The crystal structure of PA-IIL in complex with fucose reveals a tetrameric structure. Each monomer displays a nine-stranded, antiparallel b-sandwich arrangement and contains two close calcium cations that mediate the binding of fucose in a recognition mode unique among carbohydrate–protein interactions. Experimental binding studies, together with theoretical docking of fucose-containing oligosaccharides, are consistent with the assumption that antigens of the Lewis a (Lea) series may be the preferred ligands of this lectin. Precise knowledge of the lectin-binding site should allow a better design of new antibacterial-adhesion prophylactics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the PA-IIL–fucose complex.
Figure 2: Interactions of PA-IIL with calcium ions and fucose.
Figure 3: Molecular models of the docked oligosaccharides in the binding site of PA-IIL.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Govan, J.R. & Deretic, V. Microbiol. Rev. 60, 539–574 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zielenski, J. & Tsui, L.C. Annu. Rev. Genet. 29, 777–807 (1995).

    Article  CAS  Google Scholar 

  3. Scanlin, T.F. & Glick, M.C. Biochim. Biophys. Acta 1455, 241–253 (1999).

    Article  CAS  Google Scholar 

  4. Imundo, L., Barasch, J., Prince, A. & Al-Awqati, Q. Proc. Natl. Acad. Sci. USA 92, 3019–3023 (1995).

    Article  CAS  Google Scholar 

  5. Scharfman, A. et al. Glycobiology 9, 757–764 (1999).

    Article  CAS  Google Scholar 

  6. Scharfman, A. et al. Infect. Immun. 69, 5243–5248 (2001).

    Article  CAS  Google Scholar 

  7. Gilboa-Garber, N. Methods Enzymol. 83, 378–385 (1982).

    Article  CAS  Google Scholar 

  8. Gilboa-Garber, N. in Lectins Biology, Biochemistry, Clinical Biochemistry, Vol. 3 (eds. Bog-Hansen, T. & Spengler, G.A.) 495–502 (Walter de Gruyter, Berlin; 1983).

    Google Scholar 

  9. Winzer, K. et al. J. Bacteriol. 182, 6401–6411 (2000).

    Article  CAS  Google Scholar 

  10. Gilboa-Garber, N., Katcoff, D.J. & Garber, N.C. FEMS Immunol. Med. Microbiol. 29, 53–57 (2000).

    Article  CAS  Google Scholar 

  11. Garber, N., Guempel, U., Gilboa-Garber, N. & Doyle, R.J. FEMS Microbiol. Lett. 48, 331–334 (1987).

    Article  CAS  Google Scholar 

  12. Rizo, J. & Sudhof, T.C. J. Biol. Chem. 273, 15879–15882 (1998).

    Article  CAS  Google Scholar 

  13. Bianchet, M.A., Odom, E.W., Vasta, G.R. & Amzel, L.M. Nature Struct. Biol. 9, 628–634 (2002).

    CAS  PubMed  Google Scholar 

  14. Weis, W.I., Kahn, R., Fourme, R., Drickamer, K. & Hendrickson, W.A. Science 254, 1608–1615 (1991).

    Article  CAS  Google Scholar 

  15. Drickamer, K. Biochem. Soc. Trans. 24, 146–150 (1996).

    Article  CAS  Google Scholar 

  16. Pepys, M.B. et al. Nature 417, 254–259 (2002).

    Article  CAS  Google Scholar 

  17. Frates, R.C., Jr. et al. Pediatr. Res. 37, 460–464 (1995).

    Article  Google Scholar 

  18. Bismarck, P.V., Schneppenheim, R. & Schumacher, U. Klin. Pädiatr. 213, 285–287 (2001).

    Article  Google Scholar 

  19. Mysore, J.V. et al. Gastroenterology 117, 1316–1325 (1999).

    Article  CAS  Google Scholar 

  20. Tong, H.H., McIver, M.A., Fisher, L.M. & DeMaria, T.F. Microb. Pathog. 26, 111–119 (1999).

    Article  CAS  Google Scholar 

  21. Duk, M., Lisowska, E., Wu, J.H. & Wu, A.M. Anal. Biochem. 221, 266–272 (1994).

    Article  CAS  Google Scholar 

  22. Otwinowski, Z. & Minor, W. in Macromolecular Crystallography, part A, Vol. 276 (eds. Carter, C.W.J. & Sweet, R.M.) 307–326 (Academic Press, San Diego; 1997).

    Book  Google Scholar 

  23. Collaborative Computing Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  24. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  25. Cowtan, K.D. & Zhang, K.Y. Prog. Biophys. Mol. Biol. 72, 245–270 (1999).

    Article  CAS  Google Scholar 

  26. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  27. Perrakis, A., Morris, R. & Lamzin, V.S. Nature Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  28. Murshudov, G.N., A.A., Vagin & E.J., Dodson. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  29. Imberty, A. et al. Glycoconj. J. 12, 331–349 (1995).

    Article  CAS  Google Scholar 

  30. Clark, M., Cramer, R.D.I. & van den Opdenbosch, N. J. Comput. Chem. 10, 982–1012 (1989).

    Article  CAS  Google Scholar 

  31. Imberty, A. et al. in Perspectives in Structural Biology (eds. Vijayan, M., Yathindra, N. & Kolaskar, A.S.) 392–409 (Indian Academy of Sciences and Universities Press, Hyderabad; 1999).

    Google Scholar 

  32. Kraulis, P. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  33. Merrit, E.A. & Murphy, M.E. Acta Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

  34. Waldherr-Teschner, M. et al. in Advances in Scientific Visualization (eds. Post, F.H. & Hin, A.J.S.) 58–67 (Springer, Heidelberg; 1992).

    Book  Google Scholar 

  35. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Lescar for his help in data collection and ESRF for provision of synchrotron facilities. C.H. is supported by a grant from the French association ANRS, M.W. is supported by the French minister program for invited scientists and partial financial support is acknowledged from the Ministry of Education of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Imberty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, E., Houles, C., Sudakevitz, D. et al. Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat Struct Mol Biol 9, 918–921 (2002). https://doi.org/10.1038/nsb865

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb865

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing