Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two conformations in the human kinesin power stroke defined by X-ray crystallography and EPR spectroscopy

Abstract

Crystal structures of the molecular motor kinesin show conformational variability in a structural element called the neck linker. Conformational change in the neck linker, initiated by ATP exchange, is thought to drive the movement of kinesin along the microtubule track. We use site-specific EPR measurements to show that when microtubules are absent, the neck linker exists in equilibrium between two structural states (disordered and 'docked'). The active site nucleotide does not control the position taken by the neck linker. However, we find that sulfate can specifically bind near the nucleotide site and stabilize the docked neck linker conformation, which we confirmed by solving a new crystal structure. Comparing the crystal structures of our construct with the docked or undocked neck linker reveals how microtubule binding may activate the nucleotide-sensing mechanism of kinesin, allowing neck linker transitions to power motility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two crystallized conformations of human kinesin.
Figure 2: EPR measurements of site-labeled probes on the neck linker.
Figure 3: A model for microtubule-induced coupling of switch II.
Figure 4: An ion-binding site in K349.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Goldstein, L.S. Proc. Natl. Acad. Sci. USA 98, 6999–7003 (2001).

    Article  CAS  Google Scholar 

  2. Hirokawa, N. Science 279, 519–526 (1998).

    Article  CAS  Google Scholar 

  3. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Sunderland; 2001).

    Google Scholar 

  4. Block, S.M. J. Cell. Biol. 140, 1281–1284 (1998).

    Article  CAS  Google Scholar 

  5. Woehlke, G. & Schliwa, M. Nature Rev. Mol. Cell. Biol. 1, 50–58 (2000).

    Article  CAS  Google Scholar 

  6. Rice, S. et al. Nature 402, 778–784 (1999).

    Article  CAS  Google Scholar 

  7. Case, R.B., Rice, S., Hart, C.L., Ly, B. & Vale, R.D. Curr. Biol. 10, 157–160 (2000).

    Article  CAS  Google Scholar 

  8. Vale, R.D., Case, R., Sablin, E., Hart, C. & Fletterick, R. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 449–457 (2000).

    Article  CAS  Google Scholar 

  9. Rosenfeld, S.S., Jefferson, G.M. & King, P.H. J. Biol. Chem. 276, 40167–40174 (2001).

    Article  CAS  Google Scholar 

  10. Kull, F.J., Sablin, E.P., Lau, R., Fletterick, R.J. & Vale, R.D. Nature 380, 550–555 (1996).

    Article  CAS  Google Scholar 

  11. Kozielski, F. et al. Cell 91, 985–994 (1997).

    Article  CAS  Google Scholar 

  12. Sack, S. et al. Biochemistry 36, 16155–16165. (1997).

    Article  CAS  Google Scholar 

  13. Sablin, E.P., Kull, F.J., Cooke, R., Vale, R.D. & Fletterick, R.J. Nature 380, 555–559 (1996).

    Article  CAS  Google Scholar 

  14. Muller, J., Marx, A., Sack, S., Song, Y.H. & Mandelkow, E. Biol. Chem. 380, 981–992 (1999).

    Article  CAS  Google Scholar 

  15. Song, Y.H. et al. EMBO J. 20, 6213–6225 (2001).

    Article  CAS  Google Scholar 

  16. Turner, J. et al. J. Biol. Chem. 276, 25496–25502 (2001).

    Article  CAS  Google Scholar 

  17. Kikkawa, M. et al. Nature 411, 439–445 (2001).

    Article  CAS  Google Scholar 

  18. Xing, J. et al. J. Biol. Chem. 275, 35413–35423 (2000).

    Article  CAS  Google Scholar 

  19. Rosenfeld, S.S., Correia, J.J., Xing, J., Rener, B. & Cheung, H.C. J. Biol. Chem. 271, 30212–30221 (1996).

    Article  CAS  Google Scholar 

  20. Rosenfeld, S.S., Rener, B., Correia, J.J., Mayo, M.S. & Cheung, H.C. J. Biol. Chem. 271, 9473–9482 (1996).

    Article  CAS  Google Scholar 

  21. Vale, R.D. & Milligan, R.A. Science 288, 88–95 (2000).

    Article  CAS  Google Scholar 

  22. Sablin, E.P. & Fletterick, R.J. Curr. Opin. Struct. Biol. 11, 716–724 (2001).

    Article  CAS  Google Scholar 

  23. Woehlke, G. et al. Cell 90, 207–216 (1997).

    Article  CAS  Google Scholar 

  24. Sosa, H. et al. Cell 90, 217–224 (1997).

    Article  CAS  Google Scholar 

  25. Baldwin, R.L. Biophys. J. 71, 2056–2063 (1996).

    Article  CAS  Google Scholar 

  26. Naber, N., Cooke, R. & Pate, E. Biochemistry 36, 9681–9689 (1997).

    Article  CAS  Google Scholar 

  27. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  28. Kissinger, C.R., Gehlhaar, D.K. & Fogel, D.B. Acta Crystallogr. D 55, 484–491 (1999).

    Article  CAS  Google Scholar 

  29. Berman, H.M. et al. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  Google Scholar 

  30. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  31. Vriend, G. J. Mol. Graph. 8, 52–56 (1990).

    Article  CAS  Google Scholar 

  32. Guex, N. & Peitsch, M.C. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to E. Sablin, who provided many insightful comments during the preparation of the manuscript. We also give our thanks to V. Minor for enthusiastic help in the indexing and scaling of diffraction data, and P. Fajer for helpful comments on the EPR analysis. The National Institutes of Health supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Fletterick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sindelar, C., Budny, M., Rice, S. et al. Two conformations in the human kinesin power stroke defined by X-ray crystallography and EPR spectroscopy. Nat Struct Mol Biol 9, 844–848 (2002). https://doi.org/10.1038/nsb852

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb852

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing