DNA binding is required for the apoptogenic action of apoptosis inducing factor

Article metrics

Abstract

The execution of apoptosis or programmed cell death comprises both caspase-dependent and caspase-independent processes. Apoptosis inducing factor (AIF) was identified as a major player in caspase-independent cell death. It induces chromatin condensation and initial DNA cleavage via an unknown molecular mechanism. Here we report the crystal structure of human AIF at 1.8 Å resolution. The structure reveals the presence of a strong positive electrostatic potential at the AIF surface, although the calculated isoelectric point for the entire protein is neutral. We show that recombinant AIF interacts with DNA in a sequence-independent manner. In addition, in cells treated with an apoptotic stimulus, endogenous AIF becomes co-localized with DNA at an early stage of nuclear morphological changes. Structure-based mutagenesis shows that DNA-binding defective mutants of AIF fail to induce cell death while retaining nuclear translocation. The potential DNA-binding site identified from mutagenesis also coincides with computational docking of a DNA duplex. These observations suggest that AIF-induced nuclear apoptosis requires a direct interaction with DNA.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structure of AIF.
Figure 2: AIF interacts and co-localizes with DNA.
Figure 3: Mutational analysis of AIF.

Accession codes

Accessions

Protein Data Bank

References

  1. 1

    Zamzami, N. & Kroemer, G. Nature Rev. Mol. Cell Biol. 2, 67–71 (2001).

  2. 2

    Wang, X. Genes Dev. 15, 2922–2933 (2001).

  3. 3

    Susin, S.A. et al. Nature 397, 441–446 (1999).

  4. 4

    Green, D.R. Cell 94, 695–698 (1998).

  5. 5

    Joza, N. et al. Nature 410, 549–554 (2001).

  6. 6

    Susin, S.A. et al. J. Exp. Med. 192, 571–580 (2000).

  7. 7

    Arnoult, D. et al. Mol. Biol. Cell 12, 3016–3030 (2001).

  8. 8

    Miramar, M.D. et al. J. Biol. Chem. 276, 16391–16398 (2001).

  9. 9

    Mate, M.J. et al. Nature Struct. Biol. 9, 442–446 (2002).

  10. 10

    Holm, L. & Sander, C. Trends Biochem. Sci. 20, 478–480 (1995).

  11. 11

    Senda, T. et al. J. Mol. Biol. 304, 397–410 (2000).

  12. 12

    Ziegler, G.A., Vonrhein, C., Hanukoglu, I. & Schulz, G.E. J. Mol. Biol. 289, 981–990 (1999).

  13. 13

    Kong, X.P., Onrust, R., O'Donnell, M. & Kuriyan, J. Cell 69, 425–437 (1992).

  14. 14

    Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Nature 389, 251–260 (1997).

  15. 15

    Uhlmann, F. Curr. Biol. 11, R384–387 (2001).

  16. 16

    Demeret, C., Vassetzky, Y. & Mechali, M. Oncogene 20, 3086–3093 (2001).

  17. 17

    Benbow, R.M. Science Prog. 76, 425–450 (1992).

  18. 18

    Li, T.K. et al. Genes Dev. 13, 1553–1560 (1999).

  19. 19

    Montague, J.W., Hughes, F.M. Jr & Cidlowski, J.A. J. Biol. Chem. 272, 6677–6684 (1997).

  20. 20

    Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

  21. 21

    Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 (1999).

  22. 22

    Perrakis, A., Morris, R. & Lamzin, V.S. Nature Struct. Biol. 6, 458–463 (1999).

  23. 23

    Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

  24. 24

    Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

  25. 25

    Evans, S.V. J. Mol. Graph. 11, 134–138 (1993).

  26. 26

    Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

  27. 27

    Katchalski-Katzir, E. et al. Proc. Natl. Acad. Sci. USA 89, 2195–2199 (1992).

  28. 28

    Loeffler, M. et al. FASEB J. 15, 758–767 (2001).

  29. 29

    Daugas, E. et al. FASEB J. 14, 729–739 (2000).

  30. 30

    Ravagnan, L. et al. Nature Cell Biol. 3, 839–843 (2001).

Download references

Acknowledgements

We thank N. Lue and J. Wang for discussions; the laboratories of H. Robertson, J. Darnel, S. Chen-Kiang and W. Muller for technical help and staff at the advanced photon source for assistance with data collection. This work was partially supported by a special grant from the Ligue contre le Cancer and the European Commission. H.Y. is a Revson postdoctoral fellow and H.W. is a Pew scholar of biomedical sciences and a Rita Allen Scholar.

Author information

Correspondence to Hao Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Further reading