Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The 2.0 Å crystal structure of catalase-peroxidase from Haloarcula marismortui

Abstract

Catalase-peroxidase is a member of the class I peroxidase superfamily. The enzyme exhibits both catalase and peroxidase activities to remove the harmful peroxide molecule from the living cell. The 2.0 Å crystal structure of the catalase-peroxidase from Haloarcula marismortui (HmCP) reveals that the enzyme is a dimer of two identical subunits. Each subunit is composed of two structurally homologous domains with a topology similar to that of class I peroxidase. The active site of HmCP is in the N-terminal domain. Although the arrangement of the catalytic residues and the cofactor heme b in the active site is virtually identical to that of class I peroxidases, the heme moiety is buried inside the domain, similar to that in a typical catalase. In the vicinity of the active site, novel covalent bonds are formed among the side chains of three residues, including that of a tryptophan on the distal side of the heme. Together with the C-terminal domain, these covalent bonds fix two long loops on the surface of the enzyme that cover the substrate access channel to the active site. These features provide an explanation for the dual activities of this enzyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of HmCP.
Figure 2: Structural comparison among class I peroxidase superfamily.
Figure 3: Active site structure.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Cannac-Caffrey, V. et al. Biochimie 80, 1003–1011 (1998).

    Article  CAS  Google Scholar 

  2. Zamocky, M., Janecek, S. & Koller, F. Gene 256, 169–182 (2000).

    Article  CAS  Google Scholar 

  3. Welinder, K.G. Biochim. Biophys. Acta 1080, 215–220 (1992).

    Article  Google Scholar 

  4. Murthy, M.R.N., Reid, T.J. III, Sicignano, A., Tanaka, N. & Rossmann, M.G. J. Mol. Biol. 152, 465–499 (1981).

    Article  CAS  Google Scholar 

  5. Bravo, J. et al. Structure 3, 491–502 (1995).

    Article  CAS  Google Scholar 

  6. Cendrin, F., Jouve, H.M., Gaillard, J., Thibault, P. & Zaccai, G. Biochim. Biophys. Acta 1209, 1–9 (1994).

    Article  CAS  Google Scholar 

  7. Zamocky, M., Regelsberer, G., Jakopitsch, C. & Obinger C. FEBS Lett. 492, 177–182 (2001).

    Article  CAS  Google Scholar 

  8. Finzel, B.C., Poulos, T.L. & Kraut, J. J. Biol. Chem. 259, 13027–13036 (1984).

    CAS  PubMed  Google Scholar 

  9. Patterson, W.R. & Poulos, T.L. Biochemistry 34, 4331–4341 (1995).

    Article  CAS  Google Scholar 

  10. Kleywegt, G.J. & Jones, T.A. Acta Crystallogr. D 50, 178–185 (1994).

    Article  CAS  Google Scholar 

  11. Wengenack, N.L. et al. J. Infect. Dis. 176, 722–727 (1997).

    Article  CAS  Google Scholar 

  12. Sivaraja, M., Goodin, D.B., Smith, M. & Hoffman, B.M. Science. 245, 738–740 (1989).

    Article  CAS  Google Scholar 

  13. Chouchane, S., Lippai, I. & Magliozzo R.S. Biochemistry 39, 9975–9983 (2000)

    Article  CAS  Google Scholar 

  14. Hillar, A. et al. Biochemistry 39, 5868–5875 (2000).

    Article  CAS  Google Scholar 

  15. Ramaswamy, S. & Musser, J.M. Tuber. Lung Dis. 79, 3–29 (1998).

    Article  CAS  Google Scholar 

  16. Yamada, Y. et al. Acta Crystallogr. D 57, 1157–1158 (2001).

    Article  CAS  Google Scholar 

  17. Leslie, A.G.W. Proceedings of the CCP4 study weekend (eds Sawyer, L., Isaacs, N. & Bailey, S.) 44–51 (SERC Daresbury Laboratory, Warrington; 1993).

    Google Scholar 

  18. Evans, P.R. Proceedings of the CCP4 study weekend (eds Wilson, K.S., Davies, G., Ashton, A.W. & Bailey, S.) 97–102 (SERC Daresbury Laboratory, Warrington; 1997).

    Google Scholar 

  19. Otwinowski, Z. Proceedings of the CCP4 study weekend (eds Wolf, W., Evans, P.R. & Leslie, A.G.W.) 80–86 (SERC Daresbury Laboratory, Warrington; 1991).

    Google Scholar 

  20. Tanaka, N. Acta Crystallogr. A 33, 191–193 (1977).

    Article  Google Scholar 

  21. Cowtan, K. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31, 34–38 (1994).

  22. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  23. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  24. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  25. Guex, N. & Peitsch, M.C. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  Google Scholar 

  26. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. Bioinformatics 15, 305–308 (1999).

    Article  CAS  Google Scholar 

  27. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  28. Esnouf, R.M. J. Mol. Graph. Model. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  29. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  30. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–282 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present research was undertaken with the approval of the Photon Factory Advisory Committee, Japan, and the Japan Synchrotron Radiation Research Institute (JASRI). The authors wish to express their thanks to the staff at the Photon factory and SPring-8 for their help and the use of the diffractometer. The project was partly supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan; the ACT-JST Program, Japan Science and Technology Corporation; and research grant from Salt-Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Tanaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, Y., Fujiwara, T., Sato, T. et al. The 2.0 Å crystal structure of catalase-peroxidase from Haloarcula marismortui. Nat Struct Mol Biol 9, 691–695 (2002). https://doi.org/10.1038/nsb834

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb834

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing