Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dimerization of a pathogenic human mitochondrial tRNA

Abstract

Mutations of human mitochondrial transfer RNA (tRNA) are implicated in a variety of multisystemic diseases. The most prevalent pathogenic mitochondrial mutation is the A3243G substitution within the gene for tRNALeu(UUR). Here we describe the pronounced structural change promoted by this mutation. The A3243G mutation induces the formation of a tRNA dimer that strongly self-associates under physiological conditions. The dimerization interface in the mutant tRNA is a self-complementary hexanucleotide in the D-stem, a particularly weak structural element within tRNALeu(UUR). Aminoacylation of the A3243G mutant is significantly attenuated, and mutational studies indicate that dimerization is partially responsible for the observed loss of function. The disruption of a conserved tertiary structural contact also contributes to the functional defect. The pathogenic mutation is proposed to interfere with the cellular function of human mitochondrial tRNALeu(UUR) by destabilizing the native structure and facilitating the formation of a dimeric complex with low biological activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed cloverleaf secondary structure of hs mt tRNALeu(UUR) predicted by MFOLD34.
Figure 2: Detection of a tRNA dimer formed in the presence of the A3243G mutation.
Figure 3: Concentration dependence for the formation of the A3243G tRNA dimer.
Figure 4: Identification of dimer interface for A3243G tRNA complex using complementary oligonucleotides.
Figure 5: In vitro aminoacylation of hs mt tRNALeu(UUR) mutants containing substitutions promoting and prohibiting dimerization.

Similar content being viewed by others

References

  1. Anderson, S. et al. Nature 290, 457–465 (1981).

    Article  CAS  Google Scholar 

  2. Taanman, J.W. Biochim. Biophys. Acta. 1410, 103–123 (1999).

    Article  CAS  Google Scholar 

  3. Dimauro, S.J. & Schon, E.A. Am. J. Med. Genet. 106, 18–26 (2001).

    Article  CAS  Google Scholar 

  4. Helm, M. et al. RNA 6, 1356–1379 (2000).

    Article  CAS  Google Scholar 

  5. Kelley, S.O., Steinberg, S.V. & Schimmel, P. Nature Struct. Biol. 7, 862–865 (2000).

    Article  CAS  Google Scholar 

  6. Kelley, S.O., Steinberg, S.V. & Schimmel, P. J. Biol. Chem. 276, 10607–10611 (2001).

    Article  CAS  Google Scholar 

  7. Helm, M., Giegé, R. & Florentz, C. Biochemistry 38, 13338–13346 (1999).

    Article  CAS  Google Scholar 

  8. Helm, M. et al. Nucleic Acids Res. 26, 1636–1643 (1998).

    Article  CAS  Google Scholar 

  9. Maechler, P. & Wollheim, C.B. Nature 414, 807–812 (2001).

    Article  CAS  Google Scholar 

  10. van den Ouweland, J.M. et al. Nature Genet. 1, 368–371 (1992).

    Article  CAS  Google Scholar 

  11. Kadowaki, T. et al. N. Engl. J. Med. 330, 962–968 (1994).

    Article  CAS  Google Scholar 

  12. Masucci, J.P. & Schon, E.A. Mol. Biol. Rep. 22, 187–193 (1996).

    Article  CAS  Google Scholar 

  13. Rossmanith, W. & Karwan, R.M. FEBS Lett. 433, 269–274 (1998).

    Article  CAS  Google Scholar 

  14. Borner, G.V. et al. Hum. Mol. Genet. 9, 467–475 (2000).

    Article  CAS  Google Scholar 

  15. Chomyn, A., Enriquez, J.A., Micol, V., Fernandez-Silva, P. & Attardi, G. J. Biol. Chem. 275, 19198–19209 (2000).

    Article  CAS  Google Scholar 

  16. Helm, M., Florentz, C., Chomyn, A. & Attardi, G. Nucleic Acids Res. 27, 756–763 (1999).

    Article  CAS  Google Scholar 

  17. Yasukawa, T., Suzuki, T., Ueda, T., Ohta, S. & Watanabe, K. J. Biol. Chem. 275, 4251–4257 (2000).

    Article  CAS  Google Scholar 

  18. Flierl, A., Reichmann, H. & Seibel, P. J. Biol. Chem. 272, 27189–27196 (1997).

    Article  CAS  Google Scholar 

  19. Chomyn, A. et al. Proc. Natl. Acad. Sci. USA 89, 4221–4225 (1992).

    Article  CAS  Google Scholar 

  20. King, M. & Attardi, G. J. Biol. Chem. 268, 10228–10237 (1993).

    CAS  PubMed  Google Scholar 

  21. Fosse, P. et al. Biochemistry 35, 16601–16609 (1996).

    Article  CAS  Google Scholar 

  22. Sprinzl, M., Horn, C., Brown, M., Ioudovitch, A. & Steinberg, S. Nucleic Acids Res. 26, 148–153 (1998).

    Article  CAS  Google Scholar 

  23. Shaag, A., Saada, A., Steinberg, A., Navon, P. & Elpeleg, O.N. Biochem. Biophys. Res. Commun. 233, 637–639 (1997).

    Article  CAS  Google Scholar 

  24. Kim, S. in Transfer RNA: Structure, Properties and Recognition (eds. Schimmel, P., Söll, D. & Abelson, J.) 83–100 (Cold Spring Harbor Laboratory, New York; 1979).

    Google Scholar 

  25. Kholod, N. Biochemistry (Mosc.) 64, 298–306 (1999).

    CAS  Google Scholar 

  26. Loehr, J.S. & Keller, E.B. Proc. Natl. Acad. Sci. USA 61, 1115–1122 (1968).

    Article  CAS  Google Scholar 

  27. Yang, S.K., Söll, D.G. & Crothers, D.M. Biochemistry 11, 2311–2320 (1972).

    Article  CAS  Google Scholar 

  28. Ennifar, E., Walter, P., Ehresmann, B., Ehresmann, C. & Dumas, P. Nature Struct. Biol. 8, 1064–1068 (2001).

    Article  CAS  Google Scholar 

  29. Madore, E., Florentz, C., Giegé, R. & Lapointe, J. Nucleic Acids Res. 27, 3583–3588 (1999).

    Article  CAS  Google Scholar 

  30. Kholod, N., Pan'kova, N., Ksenzenko, V. & Kisselev, L. FEBS Lett. 426, 135–139 (1998).

    Article  CAS  Google Scholar 

  31. Kholod, N., Vassilenko, K., Shlyapnikov, M., Ksenzenko, V. & Kisselev, L. Nucleic Acids Res. 26, 2500–2501 (1998).

    Article  CAS  Google Scholar 

  32. Paillart, J.C., Skripkin, E., Ehresmann, B., Ehresmann, C. & Marquet, R. Proc. Natl. Acad. Sci. USA 93, 5572–5577 (1996).

    Article  CAS  Google Scholar 

  33. Shepard, A., Shiba, K. & Schimmel, P. Proc. Natl. Acad. Sci. USA 89, 9964–9968 (1992).

    Article  CAS  Google Scholar 

  34. Mathews, D.H., Sabina, J., Zuker, M. & Turner D.H. J. Mol. Biol. 288 911–940 (1999).

    Article  CAS  Google Scholar 

  35. Shubsda, M.F., McPike, M.P., Goodisman, J. & Dabrowiak, J.C. Biochemistry 38, 10147–10157 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Schimmel, T. Hendrickson and L. McLaughlin for valuable discussions and comments on this manuscript. This work was supported by Boston College, the Research Corporation (Innovation Award to S.O.K.) and the Dreyfus Foundation (New Faculty Award to S.O.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shana O. Kelley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittenhagen, L., Kelley, S. Dimerization of a pathogenic human mitochondrial tRNA. Nat Struct Mol Biol 9, 586–590 (2002). https://doi.org/10.1038/nsb820

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb820

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing