Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structures of two intermediate filament-binding fragments of desmoplakin reveal a unique repeat motif structure

Abstract

Desmosomes are intercellular junctions in which cadherin cell adhesion molecules are linked to the intermediate filament (IF) system. Desmoplakin is a member of the plakin family of IF-binding proteins. The C-terminal domain of desmoplakin (DPCT) mediates binding to IFs in desmosomes. The DPCT sequence contains three regions, termed A, B and C, consisting of 4.5 copies of a 38-amino acid repeat motif. We demonstrate that these regions form discrete subdomains that bind to IFs and report the crystal structures of domains B and C. In contrast to the elongated structures formed by other kinds of repeat motifs, the plakin repeats form a globular structure with a unique fold. A conserved basic groove found on the domain may represent an IF-binding site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structure of desmoplakin and binding to vimentin.
Figure 2: Structure of the DPCT domains B and C.
Figure 3: Plakin repeat structure.
Figure 4: Structure-based alignment of the plakin repeat motif.
Figure 5: Repeat packing.
Figure 6: Comparison of domains B and C.
Figure 7: A conserved basic groove on the PRD.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kowalczyk, A.P., Bornslaeger, E.A., Norvell, S.M., Palka, H.L. & Green, K.J. Desmosomes: intercellular adhesive junctions specialized for attachment of intermediate filaments. Int. Rev. Cytol. 185, 237–302 (1999).

    Article  CAS  Google Scholar 

  2. Koch, P.J. et al. Identification of desmoglein, a constitutive desmosomal glycoprotein, as a member of the cadherin family of cell adhesion molecules. Eur. J. Cell Biol. 53, 1–12 (1990).

    CAS  PubMed  Google Scholar 

  3. Mechanic, S., Raynor, K., Hill, J.E. & Cowin, P. Desmocollins form a distinct subset of the cadherin family of cell adhesion molecules. Proc. Natl. Acad. Sci. USA 88, 4476–4480 (1991).

    Article  CAS  Google Scholar 

  4. Witcher, L.L. et al. Desmosomal cadherin binding domains of plakoglobin. J. Biol. Chem. 271, 10904–10909 (1996).

    Article  CAS  Google Scholar 

  5. Hatzfeld, M., Kristjansson, G.I., Plessmann, U. & Weber, K. Band 6 protein, a major constituent of desmosomes from stratified epithelia, is a novel member of the armadillo multigene family. J. Cell Sci. 107, 2259–2270 (1994).

    CAS  PubMed  Google Scholar 

  6. Heid, H.W. et al. Cell type-specific desmosomal plaque proteins of the plakoglobin family: plakophilin 1 (band 6 protein). Differentiation 58, 113–131 (1994).

    Article  CAS  Google Scholar 

  7. Wahl, J.D. et al. Plakoglobin domains that define its association with the desmosomal cadherins and the classical cadherins: identification of unique and shared domains. J. Cell Sci. 109, 1143–1154 (1996).

    CAS  PubMed  Google Scholar 

  8. Leung, C.L., Green, K.J. & Liem, R.K.H. Plakins: a family of versatile cytolinker proteins. Trends Cell Biol. 12, 37–45 (2002).

    Article  CAS  Google Scholar 

  9. Green, K.J. et al. Structure of the human desmoplakins. Implications for function in the desmosomal plaque. J. Biol. Chem. 265, 2603–2612 (1990).

    CAS  PubMed  Google Scholar 

  10. Kowalczyk, A.P. et al. The amino-terminal domain of desmoplakin binds to plakoglobin and clusters desmosomal cadherin-plakoglobin complexes. J. Cell Biol. 139, 773–784 (1997).

    Article  CAS  Google Scholar 

  11. Stappenbeck, T.S. & Green, K.G. The desmoplakin carboxyl terminus coaligns with and specifically disrupts intermediate filament networks when expressed in cultured cells. J. Cell Biol. 116, 1197–1209 (1992).

    Article  CAS  Google Scholar 

  12. Kouklis, P.D., Hutton, E. & Fuchs, E. Making a connection: direct binding between keratin intermediate filaments and desmosomal proteins. J. Cell. Biol. 127, 1049–1060 (1994).

    Article  CAS  Google Scholar 

  13. Norgett, E.E. et al. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum. Mol. Genet. 9, 2761–2766 (2000).

    Article  CAS  Google Scholar 

  14. Armstrong, D.K. et al. Haploinsufficiency of desmoplakin causes a striate subtype of palmoplantar keratoderma. Hum. Mol. Genet. 8, 143–148 (1999).

    Article  CAS  Google Scholar 

  15. Gallicano, G.I. et al. Desmoplakin is required early in development for assembly of desmosomes and cytoskeletal linkage. J. Cell Biol. 143, 2009–2022 (1998).

    Article  CAS  Google Scholar 

  16. Vasioukhin, V., Bowers, E., Bauer, C., Degenstein, L. & Fuchs, E. Desmoplakin is essential in epidermal sheet formation. Nat. Cell Biol. 3, 1076–1085 (2001).

    Article  CAS  Google Scholar 

  17. Meng, J.-J., Bornslaeger, E.A., Green, K.J., Steinert, P.M. & Ip, W. Two-hybrid analysis reveals fundamental differences in direct interactions between desmoplakin and cell type-specific intermediate filaments. J. Biol. Chem. 272, 21495–21503 (1997).

    Article  CAS  Google Scholar 

  18. Nikolic, B., Nulty, E.M., Mir, B. & Wiche, G. Basic amino acid residue cluster within nuclear targeting sequence motif is essential for cytoplasmic plectin-vimentin network junctions. J. Cell Biol. 134, 1455–1467 (1996).

    Article  CAS  Google Scholar 

  19. DiColandrea, T., Karashima, T., Määttä, A. & Watt, F.M. Subcellular distribution of envoplakin and periplakin: insights into their role as precursors of the epidermal cornified envelope. J. Cell Biol. 151, 573–585 (2000).

    Article  CAS  Google Scholar 

  20. Gorina, S. & Pavletich, N.P. Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274, 1001–1005 (1996).

    Article  CAS  Google Scholar 

  21. Luh, F.Y. et al. Structure of the cyclin-dependent kinase inhibitor p19Ink4d. Nature 389, 999–1003 (1997).

    Article  CAS  Google Scholar 

  22. Huber, A.H., Nelson, W.J. & Weis, W.I. Three-dimensional structure of the armadillo repeat region of β-catenin. Cell 90, 871–882 (1997).

    Article  CAS  Google Scholar 

  23. Groves, M.R., Hanlon, N., Turowski, P., Hemmings, B.A. & Barford, D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96, 99–110 (1999).

    Article  CAS  Google Scholar 

  24. Wall, M.A. et al. The structure of the G protein heterotrimer Giα1β1γ2 . Cell 83, 1047–1058 (1995).

    Article  CAS  Google Scholar 

  25. Kobe, B. & Deisenhofer, J. Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature 366, 751–756 (1993).

    Article  CAS  Google Scholar 

  26. Yoder, M.D., Keen, N.T. & Jurnak, F. New domain motif: the structure of pectate lyase C, asecreted plant virulence factor. Science 260, 1503–1507 (1993).

    Article  CAS  Google Scholar 

  27. Janda, L., Damborsky, J., Rezniczek, G.A. & Wiche, G. Plectin repeats and modules: strategic cysteines and their presumed impact on cytolinker functions. Bioessays 23, 1064–1069 (2001).

    Article  CAS  Google Scholar 

  28. Strelkov, S.V. et al. Divide-and-conquer crystallographic approach towards an atomic structure of intermediate filaments. J. Mol. Biol. 306, 773–781 (2001).

    Article  CAS  Google Scholar 

  29. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  30. Leslie, A.G. Integration of macromolecular diffraction data. Acta Crystallogr. D 55, 1696–1702 (1999).

    Article  CAS  Google Scholar 

  31. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  32. Terwilliger, T.C. & Berendzen, J. Automated structure solution for MIR and MAD. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  33. Brünger, A.T. et al. Crystallography and NMR System (CNS): a new software system for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  34. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for the building of protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  35. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  36. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  37. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. 15, 133–138 (1997).

    Google Scholar 

  38. Nicholls, A. GRASP: Graphical Representation and Analysis of Surface Properties (Columbia University, New York; 1992).

    Google Scholar 

  39. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Ellis for beamline support. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory (SSRL), a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program, and the National Institute of General Medical Sciences. H.-J.C. was supported by fellowships from the Korea Science and Engineering Foundation and the American Heart Association. This work was supported by grants to W.I.W. and K.J.G from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William I. Weis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, HJ., Park-Snyder, S., Pascoe, L. et al. Structures of two intermediate filament-binding fragments of desmoplakin reveal a unique repeat motif structure. Nat Struct Mol Biol 9, 612–620 (2002). https://doi.org/10.1038/nsb818

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb818

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing