Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein building blocks preserved by recombination

This article has been updated

Abstract

Borrowing concepts from the schema theory of genetic algorithms, we have developed a computational algorithm to identify the fragments of proteins, or schemas, that can be recombined without disturbing the integrity of the three-dimensional structure. When recombination leaves these schemas undisturbed, the hybrid proteins are more likely to be folded and functional. Crossovers found by screening libraries of several randomly shuffled proteins for functional hybrids strongly correlate with those predicted by this approach. Experimental results from the construction of hybrids of two β-lactamases that share 40% amino acid identity demonstrate a threshold in the amount of schema disruption that the hybrid protein can tolerate. To the extent that introns function to promote recombination within proteins, natural selection would serve to bias their locations to schema boundaries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of schema disruption.
Figure 2: Schema disruption profiles compared with in vitro recombination data.
Figure 3: β-lactamase schema.
Figure 4: Interschema interactions.
Figure 5: Designed β-lactamase hybrids.
Figure 6: Activities of hybrid proteins as a function of their disruption.

Similar content being viewed by others

Change history

  • 10 June 2002

    Updated PDF, image updated

Notes

  1. *Note: A mistake was introduced during the production process of this paper. In the AOP version of the paper, footnote 6 of Table 1 was mistakenly placed after the MIC value of hybrid 2A. The correct position for footnote 6 should be after the MIC value of hybrid 1A; 2,5606 . This mistake has been corrected in the HTML version and will appear correctly in print. The PDF version available online has been appended.

References

  1. Holland, J. Adaptation in Natural and Artificial Systems (The University of Michigan Press, Ann Arbor; 1975).

    Google Scholar 

  2. Stemmer, W.P.C. Rapid evolution of a protein in-vitro by DNA shuffling. Nature 370, 389–391 (1994).

    Article  CAS  Google Scholar 

  3. Crameri, A., Raillard, S-A., Bermudez, E. & Stemmer, W.P.C. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998).

    Article  CAS  Google Scholar 

  4. Ostermeier, M. & Benkovic, S.J. Evolution of protein function by domain swapping. Adv. Protein Chem. 55, 29–77 (2000).

    Article  CAS  Google Scholar 

  5. Rossman, M.G. & Liljas, A. Recognition of structural domains in globular proteins. J. Mol. Biol. 85, 177–181 (1974).

    Article  CAS  Google Scholar 

  6. Crippen, G.M. Tree structural organization of proteins. J. Mol. Biol. 126, 315–332 (1978).

    Article  CAS  Google Scholar 

  7. Rose, G.D. Hierarchic organization of domains in globular-proteins J. Mol. Biol. 134, 447–470 (1979).

    Article  CAS  Google Scholar 

  8. Go, M. Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature 291, 90–92 (1981).

    Article  CAS  Google Scholar 

  9. Zehfus, M.H. & Rose, G.D. Compact domains in proteins. Biochemistry 25, 5759–5765 (1986).

    Article  CAS  Google Scholar 

  10. Holm, L. & Sander, C. Parser for protein folding units. Proteins 19, 256–268 (1994).

    Article  Google Scholar 

  11. Panchenko, A.R., Luthey-Schulten, Z. & Wolynes, P.G. Foldons, protein structural modules, and exons. Proc. Natl. Acad. Sci. USA 93, 2008–2013 (1996).

    Article  CAS  Google Scholar 

  12. Tsai, C.-J., Maizel, J.V. & Nussinov, R. Anatomy of protein structures: visualizing how a one-dimensional protein chain folds into a three-dimensional shape. Proc. Natl. Acad. Sci. USA 97, 12038–12043 (2000).

    Article  CAS  Google Scholar 

  13. Go, M. Modular structural units, exons, and function in chicken lysozyme. Proc. Natl. Acad. Sci. USA 80, 1964–1968 (1983).

    Article  CAS  Google Scholar 

  14. de Souza, S.J., Long, M., Schoenbach, L., Roy, S.W. & Gilbert, W. Intron positions correlate with module boundaries in ancient proteins. Proc. Natl. Acad. Sci. USA 93, 14632–14636 (1996).

    Article  CAS  Google Scholar 

  15. Gilbert, W., de Souza, S.J. & Long, M.Y. Origin of genes. Proc. Natl. Acad. Sci. USA 94, 7698–7703 (1997).

    Article  CAS  Google Scholar 

  16. Ranganathan, A. et al. Knowledge-based design of bimodular and trimodular polyketide synthases based on domain and module swaps: a route to simple statin analogues. Chem. Biol. 6, 731–741 (1999).

    Article  CAS  Google Scholar 

  17. Bogarad, L.D. & Deem, M.W. A hierarchal approach to protein molecular evolution. Proc. Natl. Acad. Sci. USA 96, 2591–2595 (1999).

    Article  CAS  Google Scholar 

  18. Riechmann, L. & Winter, G. Novel folded protein domains generated by combinatorial shuffling of polypeptide segments. Proc. Natl. Acad. Sci. USA 97, 10068–10073 (2000).

    Article  CAS  Google Scholar 

  19. Forrest, S. & Mitchell, M. Foundations of Genetic Algorithms 2 (ed. Whitley, L.D.) 109 (Morgan Kaufmann, San Mateo; 1993).

    Google Scholar 

  20. Mitchell, M. An Introduction to Genetic Algorithms (The MIT Press, Cambridge, Massachusetts; 1996).

    Google Scholar 

  21. Sanschagrin, F., Theriault, E., Sabbagh, Y., Voyer, N. & Levesque, R.C. Combinatorial biochemistry and shuffling TEM, SHV and Streptomyces albus omega loops in PSE-4 class A β-lactamase. J. Antimicrob. Chemo. 45, 517–519 (2000).

    Article  CAS  Google Scholar 

  22. Ness, J.E. et al. DNA shuffling of subgenomic sequences of subtilisin. Nature Biotech. 17, 893–896 (1999).

    Article  CAS  Google Scholar 

  23. Brock, B.J. & Waterman, M.R. The use of random chimeragenesis to study structure/function properties of rat and human P450c17. Arch. Biochem. Biophys. 373, 401–408 (2000).

    Article  CAS  Google Scholar 

  24. Ostermeier, M., Shim, J.H. & Benkovic, S.J. A combinatorial approach to hybrid enzymes independent of DNA homology. Nature Biotech. 17, 1205–1209 (1999).

    Article  CAS  Google Scholar 

  25. Lutz, S., Ostermeier, M. & Benkovic, S.J. Rapid generation of incremental truncation libraries for protein engineering using α-phosphothioate nucleotides. Nucleic Acids Res. 29, e16 (2001).

    Article  CAS  Google Scholar 

  26. Jelsch, C., Mourey, L., Masson, J.M. & Samama, J.P. Crystal-structure of Escherichia coli TEM-1 β-lactamase at 1.8-Å resolution. Proteins 16, 364–383 (1993).

    Article  CAS  Google Scholar 

  27. Lim, D. et al. Insights into the molecular basis for carbenicillinase activity of PSE-4 β-lactamase from crystallographic and kinetic studies. Biochemistry 40, 395–402 (2001).

    Article  CAS  Google Scholar 

  28. Horton, R.M. PCR-mediated recombination and mutagenesis. Mol. Biotech. 3, 93–99 (1995).

    Article  CAS  Google Scholar 

  29. Palzkill, T. & Botstein, D. Probing β-lactamase structure and function using random replacement mutagenesis. Proteins 14, 19–44 (1992).

    Article  Google Scholar 

  30. Huang, W.Z., Petrosino, J., Hirsch, M., Shenkin, P.S. & Palzkill, T. Amino acid sequence determinants of β-lactamase structure and activity. J. Mol. Biol. 258, 688–703 (1996).

    Article  CAS  Google Scholar 

  31. Voigt, C.A., Mayo, S.L., Arnold, F.H. & Wang, Z.-G. Computational method to reduce the search space for directed protein evolution. Proc. Natl. Acad. Sci. USA 98, 3778–3783 (2001).

    Article  CAS  Google Scholar 

  32. Voigt, C.A., Kauffman, S. & Wang, Z.-G. Rational evolutionary design: the theory of in vitro protein evolution. Adv. Protein Chem. 55, 79–160 (2000).

    Article  CAS  Google Scholar 

  33. Voigt, C.A., Mayo, S.L., Arnold, F.H., & Wang, Z.-G., Computationally focusing the directed evolution of proteins. J. Cell. Biochem. Suppl. 37, 58–63 (2001).

  34. Bolon, D.N., Voigt, C.A. & Mayo, S.L. De novo design of biocatalysts. Curr. Opin. Chem. Biol. 6, 125–129 (2002).

    Article  CAS  Google Scholar 

  35. Henikoff, S. & Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89, 10915–10919 (1992).

    Article  CAS  Google Scholar 

  36. Lobkovsky, E. et al. Evolution of an enzyme-activity — crystallographic structure at 2-Å resolution of cephalosporinase from the AmpC gene of Enterobacter cloacae-P99 and comparison with a class-A penicillinase. Proc. Natl. Acad. USA 90, 11257–11261 (1993).

    Article  CAS  Google Scholar 

  37. Betzel, C. et al. Crystal-structure of the alkaline proteinase savinase from Bacillus lentus at 1.4-Å resolution. J. Mol. Biol. 223, 427–445 (1992).

    Article  CAS  Google Scholar 

  38. Williams, P.A., Cosme, J., Sridhar, V., Johnson, E.F. & Mcree, D.E. Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol. Cell. 93, 121–131 (2000).

    Article  Google Scholar 

  39. Almassy, R.J., Janson, C.A., Kan, C.C. & Hostomska, Z. Structures of apo and complexed Escherichia coli glycinamide ribonucleotide transformylase. Proc. Natl. Acad. Sci. USA 89, 6114–6118 (1992).

    Article  CAS  Google Scholar 

  40. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51–55 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.A.V. is supported by a National Science Foundation graduate research fellowship and the California Institute of Technology Initiative in Computational Molecular Biology, a Burroughs Wellcome funded program for science at the interface. Z.G.W. acknowledges the support by the W.M. Keck Foundation. S.L.M. is supported by the Howard Hughes Medical Institute, the Ralph M. Parsons Foundation and an IBM Shared University Research Grant. The PSE-4 gene and the PMON vector were provided by R.C. Levesque (Université Laval, Québec, Canada).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Gang Wang, Stephen L. Mayo or Frances H. Arnold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voigt, C., Martinez, C., Wang, ZG. et al. Protein building blocks preserved by recombination. Nat Struct Mol Biol 9, 553–558 (2002). https://doi.org/10.1038/nsb805

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb805

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing