Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The hsp70 chaperone DnaK is a secondary amide peptide bond cis-trans isomerase

Abstract

Peptidyl prolyl cis-trans isomerases can enzymatically assist protein folding, but these enzymes exclusively target the peptide bond preceding proline residues. Here we report the identification of the Hsp70 chaperone DnaK as the first member of a novel enzyme class of secondary amide peptide bond cis-trans isomerases (APIases). APIases selectively accelerate the cis-trans isomerization of nonprolyl peptide bonds. Results from independent experiments support the APIase activity of DnaK: (i) exchange crosspeaks between the cis-trans conformers appear in 2D 1H NMR exchange spectra of oligopeptides (ii) the rate constants for the cis-trans isomerization of various dipeptides increase and (iii) refolding of the RNase T1 P39A variant is catalyzed. The APIase activity shows both regio and stereo selectivity and is stimulated two-fold in the presence of the complete DnaK/GrpE/DnaJ/ATP refolding system. Moreover, known DnaK-binding oligopeptides simultaneously affect the APIase activity of DnaK and the refolding yield of denatured firefly luciferase in the presence of DnaK/GrpE/DnaJ/ATP. These results suggest a new role for the chaperone as a regioselective catalyst for bond rotation in polypeptides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DnaK shows APIase activity using dipeptide substrates.
Figure 2: cis-Alanine methyl region of the 2D exchange 1H NMR spectrum of Ala-Ala-Tyr-Ala-Ala at 5°C with the corresponding 1D spectra along F2 taken at the F1 position of the correlated trans signals (solid line).
Figure 3: Rate acceleration of the Tyr 38-Ala 39 trans-to-cis isomerization limited refolding of the RNase T1 P39A variant in the presence of 2 μM DnaK (2), kobs = 0.0011 s−1, in comparison to the time course of the spontaneous refolding (1), kobs = 0.00043 s−1.
Figure 4: Reactivation of guanidinium-Cl-denatured firefly luciferase (1.2 nM) by DnaK (485 nM), GrpE (137 nM) and DnaJ (171 nM).

Similar content being viewed by others

References

  1. Fischer, G., Bang, H. & Mech, C. Biomed. Biochim. Acta 43, 1101–1111 (1984).

    CAS  PubMed  Google Scholar 

  2. Schmid, F.X., Frech, C., Scholz, C. & Walter, S. Biol. Chem. 377, 417–424 (1996).

    CAS  PubMed  Google Scholar 

  3. Hunter, T. Cell 92, 141–143 (1998).

    Article  CAS  Google Scholar 

  4. Jabs, A., Weiss, M.S. & Hilgenfeld, R. J. Mol. Biol. 286, 291–304 (1999).

    Article  CAS  Google Scholar 

  5. Scherer, G., Kramer, M.L., Schutkowski, M., Reimer, U. & Fischer, G. J. Am. Chem. Soc. 120, 5568–5574 (1998).

    Article  CAS  Google Scholar 

  6. Schiene-Fischer, C. & Fischer, G. J. Am. Chem. Soc. 123, 6227–6231 (2001).

    Article  CAS  Google Scholar 

  7. Stein, R.L. Adv. Protein Chem. 44, 1–24 (1993).

    Article  CAS  Google Scholar 

  8. Pappenberger, G. et al. Nature Struct. Biol. 8, 452–458 (2001).

    Article  CAS  Google Scholar 

  9. Zhou, X.Z. et al. Mol. Cell 6, 873–883 (2000).

    Article  CAS  Google Scholar 

  10. Ng, K.K.S. & Weis, W.I. Biochemistry 37, 17977–17989 (1998).

    Article  CAS  Google Scholar 

  11. Chiti, F. et al. J. Biol. Chem. 274, 20151–20158 (1999).

    Article  CAS  Google Scholar 

  12. Thies, M.J.W. et al. J. Mol. Biol. 293, 67–79 (1999).

    Article  CAS  Google Scholar 

  13. Bouckaert, J., Dewallef, Y., Poortmans, F., Wyns, L. & Loris, R. J. Biol. Chem. 275, 19778–19787 (2000).

    Article  CAS  Google Scholar 

  14. Stoddard, B.L. & Pietrokovski, S. Nature Struct. Biol. 5, 3–5 (1998).

    Article  CAS  Google Scholar 

  15. Chiti, F. et al. J. Biol. Chem. 274, 20151–20158 (1999).

    Article  CAS  Google Scholar 

  16. Kern, D., Kern, G., Scherer, G., Fischer, G. & Drakenberg, T. Biochemistry 34, 13594–13602 (1995).

    Article  CAS  Google Scholar 

  17. Evans, P.A., Kautz, R.A., Fox, R.O. & Dobson, C.M. Biochemistry 28, 362–370 (1989).

    Article  CAS  Google Scholar 

  18. Perona, J.J. & Craik, C.S. Protein Sci. 4, 337–360 (1995).

    Article  CAS  Google Scholar 

  19. Pinna, L.A. & Ruzzene, M. Biochim. Biophys. Acta 1314, 191–225 (1996).

    Article  CAS  Google Scholar 

  20. de Crouy-Chanel, A., Hodges, R.S., Kohiyama, M. & Richarme, G. Biochem. Biophys. Res. Commun. 233, 627–630 (1997).

    Article  CAS  Google Scholar 

  21. Zhu, X. et al. Science, 272, 1606–1614 (1996).

    Article  CAS  Google Scholar 

  22. de Crouy-Chanel, A., Kohiyama, M. & Richarme, G. J. Biol. Chem. 271,15486–15490 (1996).

    Article  CAS  Google Scholar 

  23. Mayer, M.P., Rudiger, S. & Bukau, B. Biol. Chem. 381, 877–885 (2000).

    Article  CAS  Google Scholar 

  24. Flynn, G.C., Chappell, T.G. & Rothman, J.E. Science 245, 385–390 (1989).

    Article  CAS  Google Scholar 

  25. Langer, T. et al. Nature 356, 683–689 (1992).

    Article  CAS  Google Scholar 

  26. Schiene, C., Reimer, U., Schutkowski, M. & Fischer, G. FEBS Lett. 432, 202–206 (1998).

    Article  CAS  Google Scholar 

  27. Odefey, C., Mayr, L.M. & Schmid, F.X. J. Mol. Biol. 245, 69–78 (1995).

    Article  CAS  Google Scholar 

  28. Gragerov, A., Zeng, L., Zhao, X., Burkholder, W., & Gottesman, M.E. J. Mol. Biol. 235, 848–854 (1994).

    Article  CAS  Google Scholar 

  29. Fischer, G. Chem. Soc. Rev. 29, 119–127 (2000).

    Article  CAS  Google Scholar 

  30. Schmid, D., Baici, A., Gehring, H. & Christen, P. Science 263, 971–973 (1994).

    Article  CAS  Google Scholar 

  31. Kuzmic, P. Anal. Biochem. 237, 260–273 (1996).

    Article  CAS  Google Scholar 

  32. Scholz, C. et al. Biol. Chem. 379, 361–365 (1998).

    CAS  PubMed  Google Scholar 

  33. Szabo, A. et al. Proc. Natl. Acad. Sci. USA 91, 10345–10349 (1994).

    Article  CAS  Google Scholar 

  34. Baine, P. Magn. Res. Chem. 24, 304–307 (1986).

    Article  CAS  Google Scholar 

  35. Diamant, S., Ben-Zvi, A.P., Bukau, B. & Goloubinoff, P. J. Biol. Chem. 275, 21107–21113 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F.U. Hartl for providing the DnaK plasmid, K.-P. Rücknagel for amino acid sequence analysis, D. Wildemann and G. Jahreis for syntheses and B. Korge, K. Walther, R. Steuding and M. Seidel for excellent technical assistance. We are grateful to J. Page for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunter Fischer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiene-Fischer, C., Habazettl, J., Schmid, F. et al. The hsp70 chaperone DnaK is a secondary amide peptide bond cis-trans isomerase. Nat Struct Mol Biol 9, 419–424 (2002). https://doi.org/10.1038/nsb804

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb804

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing