Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation

Abstract

Cysteine-rich repeats in the integrin β subunit stalk region relay activation signals to the ligand-binding headpiece. The NMR solution structure and disulfide bond connectivity of Cys-rich module-3 of the integrin β2 subunit reveal a nosecone-shaped variant of the EGF fold, termed an integrin-EGF (I-EGF) domain. Interdomain contacts between I-EGF domains 2 and 3 observed by NMR support a model in which the modules are related by an approximate two-fold screw axis in an extended arrangement. Our findings complement a 3.1 Å crystal structure of the extracellular portion of integrin αVβ3, which lacks an atomic model for I-EGF2 and a portion of I-EGF3. The disulfide connectivity of I-EGF3 chemically assigned here differs from the pairings suggested in the αVβ3 structure. Epitopes that become exposed upon integrin activation and residues that restrain activation are defined in β2 I-EGF domains 2 and 3. Superposition on the αVβ3 structure reveals that they are buried. This observation suggests that the highly bent αVβ3 structure represents the inactive conformation and that release of contacts with I-EGF modules 2 and 3 triggers a switchblade-like opening motion extending the integrin into its active conformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrin domain organization and the Cys-rich repeats.
Figure 2: Solution structure of I-EGF3.
Figure 3: Interdomain interactions between I-EGF2 and I-EGF3.
Figure 4: Integrin activation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Humphries, M.J. Biochem. Soc. Trans. 28, 311–339 (2000).

    Article  CAS  Google Scholar 

  2. Takagi, J., Erickson, H.P. & Springer, T.A. Nature Struct. Biol. 8, 412–416 (2001).

    Article  CAS  Google Scholar 

  3. Lu, C., Takagi, J. & Springer, T.A. J. Biol. Chem. 276, 14642–14648 (2001).

    Article  CAS  Google Scholar 

  4. Lu, C., Ferzly, M., Takagi, J. & Springer, T.A. J. Immunol. 166, 5629–5637 (2001).

    Article  CAS  Google Scholar 

  5. Zang, Q. & Springer, T.A. J. Biol. Chem. 276, 6922–6929 (2001).

    Article  CAS  Google Scholar 

  6. Huang, C., Lu, C. & Springer, T.A. Proc. Natl. Acad. Sci. USA 94, 3156–3161 (1997).

    Article  CAS  Google Scholar 

  7. Emsley, J., Knight, C.G., Farndale, R.W., Barnes, M.J. & Liddington, R.C. Cell 101, 47–56 (2000).

    Article  CAS  Google Scholar 

  8. Xiong, J.-P. et al. Science 294, 339–345 (2001).

    Article  CAS  Google Scholar 

  9. Takagi, J., Beglova, N., Yalamanchili, P., Blacklow, S.C. & Springer, T.A. Proc. Natl. Acad. Sci. USA 98, 11175–11180 (2001).

    Article  CAS  Google Scholar 

  10. Tan, S.-M. et al. FEBS Lett. 505, 27–30 (2001).

    Article  CAS  Google Scholar 

  11. Bork, P., Downing, A.K., Kieffer, B. & Campbell, I.D. Q. Rev. Biophys. 29, 119–167 (1996).

    Article  CAS  Google Scholar 

  12. Rao, Z. et al. Cell 82, 131–141 (1995).

    Article  CAS  Google Scholar 

  13. Downing, A.K. et al. Cell 85, 597–605 (1996).

    Article  CAS  Google Scholar 

  14. Shih, D.T., Edelman, J.M., Horwitz, A.F., Grunwald, G.B. & Buck, C.A. J. Cell Biol. 122, 1361–1371 (1993).

    Article  CAS  Google Scholar 

  15. Faull, R.J. et al. J. Biol. Chem. 271, 25099–25106 (1996).

    Article  CAS  Google Scholar 

  16. Bazzoni, G., Shih, D.-T., Buck, C.A. & Hemler, M.A. J. Biol. Chem. 270, 25570–25577 (1995).

    Article  CAS  Google Scholar 

  17. Takagi, J., Isobe, T., Takada, Y. & Saito, Y. J. Biochem. (Tokyo) 121, 914–921 (1997).

    Article  CAS  Google Scholar 

  18. Du, X. et al. J. Biol. Chem. 268, 23087–23092 (1993).

    CAS  Google Scholar 

  19. Lee, B. & Richards, F.M. J. Mol. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  20. Bailey, S. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  21. Janin, J. Nature. Struct. Biol. 4, 973–974 (1997).

    Article  CAS  Google Scholar 

  22. Mehta, R.J. et al. Biochem. J. 330, 861–869 (1998).

    Article  CAS  Google Scholar 

  23. Smith, J.W., Piotrowicz, R.S. & Mathis, D. J. Biol. Chem. 269, 960–967 (1994).

    CAS  PubMed  Google Scholar 

  24. Hughes, P.E., O'Toole, T.E., Ylanne, J., Shattil, S.J. & Ginsberg, M.H. J. Biol. Chem. 270, 12411–12417 (1995).

    Article  CAS  Google Scholar 

  25. Huang, C., Zang, Q., Takagi, J. & Springer, T.A. J. Biol. Chem. 275, 21514–21524 (2000).

    Article  CAS  Google Scholar 

  26. Carr, C.M. & Kim, P.S. Cell 73, 823–832 (1993).

    Article  CAS  Google Scholar 

  27. Bullough, P.A., Hughson, F.M., Skehel, J.J. & Wiley, D.C. Nature 371, 37–43 (1994).

    Article  CAS  Google Scholar 

  28. Andrew, D. et al. Eur. J. Immunol. 23, 2217–2222 (1993).

    Article  CAS  Google Scholar 

  29. Studier, F.W. & Moffatt, B.A. J. Mol. Biol. 189, 113–130 (1986).

    Article  CAS  Google Scholar 

  30. Blacklow, S.C. & Kim, P.S. Nature Struct. Biol. 3, 758–762 (1996).

    Article  CAS  Google Scholar 

  31. North, C.L. & Blacklow, S.C. Biochemistry 38, 3926–3935 (1999).

    Article  CAS  Google Scholar 

  32. Cavanagh, J., Palmer, I.A.G., Fairbrother, W. & Skelton, N.J. Protein NMR Spectroscopy: Principles and Practice. (Academic Press, San Diego; 1996).

  33. Pons, J.-L. Malliavin, T.E. & Delsuc, M.A. J. Biomol. NMR 8, 445–452 (1996).

    Article  CAS  Google Scholar 

  34. Bai, Y., Milne, J.S., Mayne, L. & Englander, S.W. Proteins 17, 75–86 (1993).

    Article  CAS  Google Scholar 

  35. Brunger, A.T. et al. Acta Crystallgr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  36. Stickle, D.F., Presta, L.G., Dill, K.A. & Rose, G.D. J. Mol. Biol. 226, 1143–1159 (1992).

    Article  CAS  Google Scholar 

  37. Sali, A. & Blundell, T.L. J. Mol. Biol. 234, 779–815 (1993).

    Article  CAS  Google Scholar 

  38. Laskowski, R.A., Rullmann, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

  39. Carson, M. Methods Enzymol. 277, 493–505 (1997).

    Article  CAS  Google Scholar 

  40. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by grants from the NIH, Pew Charitable Trust and the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen C. Blacklow or Timothy A. Springer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beglova, N., Blacklow, S., Takagi, J. et al. Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation. Nat Struct Mol Biol 9, 282–287 (2002). https://doi.org/10.1038/nsb779

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb779

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing