Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site

Abstract

The p38 MAP kinase plays a crucial role in regulating the production of proinflammatory cytokines, such as tumor necrosis factor and interleukin-1. Blocking this kinase may offer an effective therapy for treating many inflammatory diseases. Here we report a new allosteric binding site for a diaryl urea class of highly potent and selective inhibitors against human p38 MAP kinase. The formation of this binding site requires a large conformational change not observed previously for any of the protein Ser/Thr kinases. This change is in the highly conserved Asp-Phe-Gly motif within the active site of the kinase. Solution studies demonstrate that this class of compounds has slow binding kinetics, consistent with the requirement for conformational change. Improving interactions in this allosteric pocket, as well as establishing binding interactions in the ATP pocket, enhanced the affinity of the inhibitors by 12,000-fold. One of the most potent compounds in this series, BIRB 796, has picomolar affinity for the kinase and low nanomolar inhibitory activity in cell culture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro and in vivo data for selected p38 inhibitors.
Figure 2: A new allosteric binding pocket for compound 1 in human p38 MAP kinase.
Figure 3: A conformational change in the kinase is required for the binding of diaryl urea inhibitors.
Figure 4: Kinetics of compound binding to p38 MAP kinase.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Feldmann, M., Brennan, F.M., & Maini, R.N. Annu. Rev. Immunol. 14, 397–440 (1996).

    Article  CAS  Google Scholar 

  2. Weinblatt, M.E. et al. N. Engl. J. Med. 340, 253–259 (1999).

    Article  CAS  Google Scholar 

  3. Jarvis, B. & Faulds, D. Drugs 57, 945–966 (1999).

    Article  CAS  Google Scholar 

  4. Prichett, W., Hand, A., Sheilds, J., & Dunnington, D. J. Inflamm. 45, 97–105 (1995).

    CAS  Google Scholar 

  5. Lee, J.C. et al. Nature 372, 739–746 (1994).

    Article  CAS  Google Scholar 

  6. Lee, J.C. et al. Ann. NY Acad. Sci. 696, 149–170 (1993).

    Article  CAS  Google Scholar 

  7. Dumas, J. et al. Bioorg. Med. Chem. Lett. 10, 2047–2050 (2000).

    Article  CAS  Google Scholar 

  8. Tong, L. et al. Nature Struct. Biol. 4, 311–316 (1997).

    Article  CAS  Google Scholar 

  9. Frantz, B. et al. Biochemistry 37, 13846–13853 (1998).

    Article  CAS  Google Scholar 

  10. Young, P.R. et al. J. Biol. Chem. 272, 12116–12121 (1997).

    Article  CAS  Google Scholar 

  11. Morelock, M.M., Pargellis, C.A., Graham, E.T., Lamarre, D. & Jung, G. J. Med. Chem. 38, 1751–1761 (1995).

    Article  CAS  Google Scholar 

  12. Pargellis, C.A. et al. Biochemistry 33, 12527–12534 (1994).

    Article  CAS  Google Scholar 

  13. Kaplan, A.P. & Bartlett, P.A. Biochemistry 30, 8165–8170 (1991).

    Article  CAS  Google Scholar 

  14. Cha, S. Biochem. Pharmacol. 24, 2177–2185 (1975).

    Article  CAS  Google Scholar 

  15. Hubbard, S.R., Wei, L., Ellis, L., & Hendrickson, W.A. Nature 372, 746–754 (1994).

    Article  CAS  Google Scholar 

  16. Hubbard, S.R., Mohammadi, M., & Schlessinger, J. J. Biol. Chem. 273, 11987–11990 (1998).

    Article  CAS  Google Scholar 

  17. Schindler, T. et al. Science 289, 1938–1942 (2000).

    Article  CAS  Google Scholar 

  18. Hanks, S.K., Quinn, A.M. & Hunter, T. Science 241, 42–52 (1988).

    Article  CAS  Google Scholar 

  19. Branger, J. et al. J. Immunol. In the press (2002).

  20. Cirillo, P.F., Gilmore, T.A., Hickey, E., Regan, J. & Zhang, L.H. Aromatic Heterocyclic Compounds as Antiinflammatory Agents. World Patent Application WO-00043384 (2000).

    Google Scholar 

  21. Pav, S. et al. Protein Sci. 6, 242–245 (1997).

    Article  CAS  Google Scholar 

  22. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  23. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  24. Raingeaud, J., Whitmarsh, A.J., Barrett, T., Derijard, B. & Davis, R.J. Mol. Cell. Biol. 16, 1247–1255 (1996).

    Article  CAS  Google Scholar 

  25. Han, J. et al. J. Biol. Chem. 271, 2886–2891 (1996).

    Article  CAS  Google Scholar 

  26. Lozanski, G., Ballou, S.P., & Kushner, I. J. Rheumatol. 19, 921–926 (1992).

    CAS  PubMed  Google Scholar 

  27. Carson, M. J. Mol. Graph. 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  28. Evans, S.V. J. Mol. Graph. 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  29. Nicholls, A., Sharp, K A., & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to the following people: J. Pelletier, A. Proto and M. Basso for assistance with biological assays; A. Swinamer, B. Klaus and M. Moriak for the preparation of various analogs of BIRB 796; M. Morelock for statistical analysis; L. Rondano for graphics support; and R. Winquist and P. Farina for useful discussions. We acknowledge Glaxo SmithKline Pharmaceuticals for the generous gift of SK&F 86002.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher Pargellis or Liang Tong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pargellis, C., Tong, L., Churchill, L. et al. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat Struct Mol Biol 9, 268–272 (2002). https://doi.org/10.1038/nsb770

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb770

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing