Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states

An Erratum to this article was published on 01 April 2002

Abstract

Explaining the determinants involved in regulating the equilibrium between different chromatin structural states is fundamental to understanding differential gene expression. Histone variant H2A.Z is essential to chromatin architecture in higher eukaryotes but its role has not yet been explained. We show here that H2A.Z facilitates the intramolecular folding of nucleosomal arrays while simultaneously inhibiting the formation of highly condensed structures that result from intermolecular association. This makes a case for H2A.Z playing a fundamental role in creating unique chromatin domains poised for transcriptional activation. These results provide new insights into understanding how chromatin fiber dynamics can be altered by core histone variants to potentially regulate genomic function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of H2A- (control) and H2A.Z-containing nucleosomal arrays.
Figure 2: H2A.Z facilitates the intrinsic 29S–55S folding pathway.
Figure 3: H2A.Z inhibits the formation of highly condensed chromatin fibers.
Figure 4: H2A.Z alters nucleosome positioning.

Similar content being viewed by others

References

  1. Strahl, B.D. & Allis, C.D. Nature 403, 41–45 (2000).

    Article  CAS  Google Scholar 

  2. Jackson, J.D. & Gorovsky, M.A. Nucleic Acids Res. 28, 3811–3816 (2000).

    Article  CAS  Google Scholar 

  3. van Daal, A. & Elgin, S.C. Mol. Biol. Cell 3, 593–602 (1992).

    Article  CAS  Google Scholar 

  4. Liu, X., Li, B. & Gorovsky, M.A. Mol. Cell. Biol. 16, 4305–4311 (1996).

    Article  CAS  Google Scholar 

  5. Faast, R. et al. Current Biol. 11, 1183–1187 (2001).

    Article  CAS  Google Scholar 

  6. Clarkson, M.J., Wells, J.R., Gibson, F., Saint, R. & Tremethick, D.J. Nature 399, 694–697 (1999).

    Article  CAS  Google Scholar 

  7. Suto, R.K., Clarkson, M.J., Tremethick, D.J. & Luger, K. Nature Struct. Biol. 7, 1121–1124 (2000).

    Article  CAS  Google Scholar 

  8. Fletcher, T.M. & Hansen, J.C. J. Biol. Chem. 270, 25359–25362 (1995).

    Article  CAS  Google Scholar 

  9. Carruthers, L.M., Bednar, J., Woodcock C.L. & Hansen, J.C. Biochemistry 37, 14776–14787 (1998).

    Article  CAS  Google Scholar 

  10. Tse, C. & Hansen, J.C. Biochemistry 36, 11381–11388 (1997).

    Article  CAS  Google Scholar 

  11. Carruthers, L.M. & Hansen, J.C. J. Biol. Chem. 275, 37285–37290 (2000).

    Article  CAS  Google Scholar 

  12. Fletcher, T.M. & Hansen, J.C. Crit. Rev. Eukaryot. Gene Expr. 6, 149–188 (1996).

    Article  CAS  Google Scholar 

  13. Tse, C., Sera,T., Wolffe, A.P. & Hansen, J.C. Mol. Cell. Biol. 18, 4629–4638 (1998).

    Article  CAS  Google Scholar 

  14. Pollard, K.J., Samuels, M.L., Crowley, K.A., Hansen, J.C. & Peterson, C.L. EMBO J. 18, 5622–5633 (1999).

    Article  CAS  Google Scholar 

  15. Schwarz, P.M. & Hansen, J.C. J Biol. Chem. 269, 16284–16289 (1994).

    CAS  PubMed  Google Scholar 

  16. Hansen, J.C., Ausio, J., Stanik, V.H. & van Holde, K.E. Biochemistry 28, 9129–9136 (1989).

    Article  CAS  Google Scholar 

  17. Hebbes, T.R. Clayton, A.L., Thorne, A.W. & Crane-Robinson, C. EMBO J. 13, 1823–1830 (1994).

    Article  CAS  Google Scholar 

  18. Stargell, L.A. et al. Genes Dev. 7, 2641–2651 (1993).

    Article  CAS  Google Scholar 

  19. Waterborg, J.H. J. Biol. Chem. 275, 13007–13011 (2000).

    Article  CAS  Google Scholar 

  20. Santisteban, M.S., Kalashnikova, T. & Smith, M.M. Cell 103, 411–422 (2000).

    Article  CAS  Google Scholar 

  21. Leach, T.J., et al. J. Biol. Chem. 275, 23267–23272 (2000).

    Article  CAS  Google Scholar 

  22. Dhillon, N. & Kamakaka, R.T. Mol. Cell 6, 769–780 (2000).

    Article  CAS  Google Scholar 

  23. Abbott, D.W., Ivanova, V.S., Wang, X., Bonner, W.M. & Ausio, J. J. Biol. Chem. 276, 41945–41949 (2001).

    Article  CAS  Google Scholar 

  24. Li, W., Nagaraja, S., Delcuve, G.P., Hendzel, M.J. & Davie, J.R. Biochem. J. 296, 737–744 (1993).

    Article  CAS  Google Scholar 

  25. Luger, K., Rechsteiner, T.J. & Richmond, T. J. Methods Enzymol. 304, 3–19 (1999).

    Article  CAS  Google Scholar 

  26. Hansen, J.C. & Lohr, D. J. Biol. Chem. 268, 5840–5848 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Human Frontier Science Program grant to K.L. and D.J.T., and an NIH grant to J.C.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David John Tremethick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, J., Gordon, F., Luger, K. et al. The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nat Struct Mol Biol 9, 172–176 (2002). https://doi.org/10.1038/nsb767

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb767

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing