Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Siah ubiquitin ligase is structurally related to TRAF and modulates TNF-α signaling

Abstract

Members of the Siah (seven in absentia homolog) family of RING domain proteins are components of E3 ubiquitin ligase complexes that catalyze ubiquitination of proteins. We have determined the crystal structure of the substrate-binding domain (SBD) of murine Siah1a to 2.6 Å resolution. The structure reveals that Siah is a dimeric protein and that the SBD adopts an eight-stranded β-sandwich fold that is highly similar to the TRAF-C region of TRAF (TNF-receptor associated factor) proteins. The TRAF-C region interacts with TNF-α receptors and TNF-receptor associated death-domain (TRADD) proteins; however, our findings indicate that these interactions are unlikely to be mimicked by Siah. The Siah structure also reveals two novel zinc fingers in a region with sequence similarity to TRAF. We find that the Siah1a SBD potentiates TNF-α-mediated NF-κB activation. Therefore, Siah proteins share important similarities with the TRAF family of proteins, including their overall domain architecture, three-dimensional structure and functional activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary structure of Siah.
Figure 2: Siah1a SBD forms a dimer in solution.
Figure 3: Structure of Siah1a SBD.
Figure 4: Similarities between Siah and TRAF.
Figure 5: Surface features of Siah SBD.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Ciechanover, A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J. 17, 7151–7160 (1998).

    Article  CAS  Google Scholar 

  2. Lorick, K.L. et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl. Acad. Sci. USA 96, 11364–11369 (1999).

    Article  CAS  Google Scholar 

  3. Joazeiro, C.A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309–312 (1999).

    Article  CAS  Google Scholar 

  4. Zheng, N., Wang, P., Jeffrey, P.D. & Pavletich, N.P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000).

    Article  CAS  Google Scholar 

  5. Carthew, R.W. & Rubin, G.M. Seven in absentia, a gene required for specification of R7 cell fate in the Drosophila eye. Cell 63, 561–577 (1990).

    Article  CAS  Google Scholar 

  6. Tang, A.H., Neufeld, T.P., Kwan, E. & Rubin, G.M. PHYL acts to down-regulate TTK88, a transcriptional repressor of neuronal cell fates, by a SINA-dependent mechanism. Cell 90, 459–467 (1997).

    Article  CAS  Google Scholar 

  7. Li, S., Li, Y., Carthew, R.W. & Lai, Z.C. Photoreceptor cell differentiation requires regulated proteolysis of the transcriptional repressor Tramtrack. Cell 90, 469–478 (1997).

    Article  CAS  Google Scholar 

  8. Dong, X. et al. ebi regulates epidermal growth factor receptor signaling pathways in Drosophila. Genes Dev. 13, 954–965 (1999).

    Article  CAS  Google Scholar 

  9. Boulton, S.J., Brook, A., Staehling-Hampton, K., Heitzler, P. & Dyson, N. A role for ebi in neuronal cell cycle control. EMBO J. 19, 5376–5386 (2000).

    Article  CAS  Google Scholar 

  10. Matsuzawa, S., Takayama, S., Froesch, B.A., Zapata, J.M. & Reed, J.C. p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1. EMBO J. 17, 2736–2747 (1998).

    Article  CAS  Google Scholar 

  11. Hu, G. et al. Mammalian homologs of seven in absentia regulate DCC via the ubiquitin- proteasome pathway. Genes Dev. 11, 2701–2714 (1997).

    Article  CAS  Google Scholar 

  12. Hu, G. & Fearon, E.R. Siah-1 N-terminal RING domain is required for proteolysis function, and C-terminal sequences regulate oligomerization and binding to target proteins. Mol. Cell. Biol. 19, 724–732 (1999).

    Article  CAS  Google Scholar 

  13. Zhang, J., Guenther, M.G., Carthew, R.W. & Lazar, M.A. Proteasomal regulation of nuclear receptor corepressor-mediated repression. Genes Dev. 12, 1775–1780 (1998).

    Article  CAS  Google Scholar 

  14. Germani, A. et al. SIAH-1 interacts with α-tubulin and degrades the kinesin Kid by the proteasome pathway during mitosis. Oncogene 19, 5997–6006 (2000).

    Article  CAS  Google Scholar 

  15. Matsuzawa, S. & Reed, J.C. Siah-1, SIP, and Ebi collaborate in a novel pathway for β-catenin degradation linked to p53 responses. Mol. Cell 7, 915–926 (2001).

    Article  CAS  Google Scholar 

  16. Liu, J. et al. Siah-1 mediates a novel β-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol. Cell 7, 927–936 (2001).

    Article  CAS  Google Scholar 

  17. Germani, A. et al. hSiah2 is a new Vav binding protein which inhibits Vav-mediated signaling pathways. Mol. Cell. Biol. 19, 3798–3807 (1999).

    Article  CAS  Google Scholar 

  18. Relaix, F. et al. Pw1/Peg3 is a potential cell death mediator and cooperates with Siah1a in p53-mediated apoptosis. Proc. Natl. Acad. Sci. USA 97, 2105–2110 (2000).

    Article  CAS  Google Scholar 

  19. Pickart, C.M. Ubiquitin enters the new millenium; meeting review. Mol. Cell 8, 499–504 (2001).

    Article  CAS  Google Scholar 

  20. Ulrich, H.D. & Jentsch, S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 19, 3388–3397 (2000).

    Article  CAS  Google Scholar 

  21. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

    Article  CAS  Google Scholar 

  22. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    Article  CAS  Google Scholar 

  23. Narayan, V.A., Kriwacki, R.W. & Caradonna, J.P. Structures of zinc finger domains from transcription factor Sp1. Insights into sequence-specific protein–DNA recognition. J. Biol. Chem. 272, 7801–7809 (1997).

    Article  CAS  Google Scholar 

  24. Liew, C.K. et al. Solution structures of two CCHC zinc fingers from the FOG family protein U-shaped that mediate protein–protein interactions. Structure Fold Des. 8, 1157–1166 (2000).

    Article  CAS  Google Scholar 

  25. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  26. Ni, C.Z. et al. Molecular basis for CD40 signaling mediated by TRAF3. Proc. Natl. Acad. Sci. USA 97, 10395–10399 (2000).

    Article  CAS  Google Scholar 

  27. Inoue, J. et al. Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp. Cell Res. 254, 14–24 (2000).

    Article  CAS  Google Scholar 

  28. Zapata, J.M. et al. A diverse family of proteins containing tumor necrosis factor receptor-associated factor domains. J. Biol. Chem. 276, 24242–24252 (2001).

    Article  CAS  Google Scholar 

  29. Park, Y.C., Burkitt, V., Villa, A.R., Tong, L. & Wu, H. Structural basis for self-association and receptor recognition of human TRAF2. Nature 398, 533–538 (1999).

    Article  CAS  Google Scholar 

  30. McWhirter, S.M. et al. Crystallographic analysis of CD40 recognition and signaling by human TRAF2. Proc. Natl. Acad. Sci. USA 96, 8408–8413 (1999).

    Article  CAS  Google Scholar 

  31. Park, Y.C. et al. A novel mechanism of TRAF signaling revealed by structural and functional analyses of the TRADD-TRAF2 interaction. Cell 101, 777–787 (2000).

    Article  CAS  Google Scholar 

  32. Rothe, M. et al. I-TRAF is a novel TRAF-interacting protein that regulates TRAF-mediated signal transduction. Proc. Natl. Acad. Sci. USA 93, 8241–8246 (1996).

    Article  CAS  Google Scholar 

  33. Takeuchi, M., Rothe, M. & Goeddel, D.V. Anatomy of TRAF2. Distinct domains for nuclear factor-κB activation and association with tumor necrosis factor signaling proteins. J. Biol. Chem. 271, 19935–19942 (1996).

    Article  CAS  Google Scholar 

  34. Song, H.Y., Rothe, M. & Goeddel, D.V. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-κB activation. Proc. Natl. Acad. Sci. USA 93, 6721–6725 (1996).

    Article  CAS  Google Scholar 

  35. Lee, S.Y. & Choi, Y. TRAF-interacting protein (TRIP): a novel component of the tumor necrosis factor receptor (TNFR)- and CD30-TRAF signaling complexes that inhibits TRAF2-mediated NF-κB activation. J. Exp. Med. 185, 1275–1285 (1997).

    Article  CAS  Google Scholar 

  36. Song, H.Y., Regnier, C.H., Kirschning, C.J., Goeddel, D.V. & Rothe, M. Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-κB and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. Proc. Natl. Acad. Sci. USA 94, 9792–9796 (1997).

    Article  CAS  Google Scholar 

  37. Relaix, F., Wei, X.J., Wu, X. & Sassoon, D.A. Peg3/Pw1 is an imprinted gene involved in the TNF-NFκB signal transduction pathway. Nature Genet. 18, 287–291 (1998).

    Article  CAS  Google Scholar 

  38. Shi, C.S., Leonardi, A., Kyriakis, J., Siebenlist, U. & Kehrl, J.H. TNF-mediated activation of the stress-activated protein kinase pathway: TNF receptor-associated factor 2 recruits and activates germinal center kinase related. J. Immunol. 163, 3279–3285 (1999).

    CAS  PubMed  Google Scholar 

  39. Arch, R.H., Gedrich, R.W. & Thompson, C.B. Tumor necrosis factor receptor-associated factors (TRAFs) — a family of adapter proteins that regulates life and death. Genes Dev. 12, 2821–2830 (1998).

    Article  CAS  Google Scholar 

  40. Kim, S.J., Jeong, D.G., Chi, S.W., Lee, J.S. & Ryu, S.E. Crystal structure of proteolytic fragments of the redox-sensitive Hsp33 with constitutive chaperone activity. Nature Struct. Biol. 8, 459–466 (2001).

    Article  CAS  Google Scholar 

  41. Schulman, B.A. et al. Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408, 381–386 (2000).

    Article  CAS  Google Scholar 

  42. Stebbins, C.E., Kaelin, W.G. Jr. & Pavletich, N.P. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284, 455–461 (1999).

    Article  CAS  Google Scholar 

  43. Johnson, M.L., Correia, J.J., Yphantis, D.A. & Halvorson, H.R. Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys. J. 36, 575–588 (1981).

    Article  CAS  Google Scholar 

  44. Ralston, G.B. OMMENU (University of Sydney, Australia; 1994).

  45. Perkins, S.J. Protein volumes and hydration effects. The calculations of partial specific volumes, neutron scattering matchpoints and 280-nm absorption coefficients for proteins and glycoproteins from amino acid sequences. Eur. J. Biochem. 157, 169–180 (1986).

    Article  CAS  Google Scholar 

  46. Hayes, D.B., Laue, T. & Philo, J. SEDNTERP. (University of New Hampshire, USA; 1995).

  47. Otwinowski, K. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  48. Brünger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  49. Collaborative Computational Project, Number 4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  50. Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  51. Luthy, R., Bowie, J.U. & Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature 356, 83–85 (1992).

    Article  CAS  Google Scholar 

  52. Duyao, M.P., Buckler, A.J. & Sonenshein, G.E. Interaction of an NF-κB-like factor with a site upstream of the c-myc promoter. Proc. Natl. Acad. Sci. USA 87, 4727–4731 (1990).

    Article  CAS  Google Scholar 

  53. Seed, B. & Sheen, J.Y. A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene 67, 271–277 (1988).

    Article  CAS  Google Scholar 

  54. Lee, F.S., Hagler, J., Chen, Z.J. & Maniatis, T. Activation of the IκB α kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88, 213–222 (1997).

    Article  CAS  Google Scholar 

  55. Ishikawa, K. et al. Competitive interaction of seven in absentia homolog-1A and Ca2+/calmodulin with the cytoplasmic tail of group 1 metabotropic glutamate receptors. Genes Cells 4, 381–390 (1999).

    Article  CAS  Google Scholar 

  56. Sourisseau, T. et al. Alteration of the stability of Bag-1 protein in the control of olfactory neuronal apoptosis. J. Cell Sci. 114, 1409–1416 (2001).

    CAS  PubMed  Google Scholar 

  57. Tanikawa, J. et al. p53 suppresses the c-Myb-induced activation of heat shock transcription factor 3. J. Biol. Chem. 275, 15578–15585 (2000).

    Article  CAS  Google Scholar 

  58. Barton, G.J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 6, 37–40 (1993).

    Article  CAS  Google Scholar 

  59. Esnouf, R.M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D. 55, 938–940. (1999).

    Article  CAS  Google Scholar 

  60. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Wilson, F. Katsis and B. Cromer (St. Vincent's Institute of Medical Research) for assistance with mass spectrometry and protein expression, and M. Pardee for N-terminal sequencing. We thank H. Tong and other staff at BioCARS for their help with data collection during our visit to the Advanced Photon Source. Access to BioCARS Sector 14 at the Advanced Photon Source at Argonne, Illinois, was provided by the Australian Synchrotron Research Program, which is funded by the Commonwealth of Australia as a Major National Research Facility. BioCARS Sector 14 is supported by the U.S. National Institutes of Health, National Center for Research Resources. The Advanced Photon Source is supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Energy Research. M.W.P. is an Australian Research Council Senior Research Fellow, D.D.L.B. is a National Health and Medical Research Council of Australia Senior Research Fellow and D.S. is an American Heart Association Kenner Fellow. This work was additionally supported by grants from the NIH (NCI) (D.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D.L. Bowtell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polekhina, G., House, C., Traficante, N. et al. Siah ubiquitin ligase is structurally related to TRAF and modulates TNF-α signaling. Nat Struct Mol Biol 9, 68–75 (2002). https://doi.org/10.1038/nsb743

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing