Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dramatic modulation of electron transfer in protein complexes by crosslinking

Abstract

The transfer of electrons between proteins is an essential step in biological energy production. Two protein redox partners are often artificially crosslinked to investigate the poorly understood mechanism by which they interact. To better understand the effect of crosslinking on electron transfer rates, we have constructed dimers of azurin by crosslinking the monomers. The measured electron exchange rates, combined with crystal structures of the dimers, demonstrate that the length of the linker can have a dramatic effect on the structure of the dimer and the electron transfer rate. The presence of ordered water molecules in the protein–protein interface may considerably influence the electronic coupling between redox centers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wild type azurin.
Figure 2: Region of the 1H NMR spectra showing the Val 31 methyl signal (−0.7 p.p.m.) as a function of the percentage of oxidized protein.
Figure 3: Crystal structures of N42C azurin dimers.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Bendall, D.S. In Protein electron transfer (ed. Bendall, D.S.) 43–68 (Bios Scientific Publishers, Oxford; 1996).

    Google Scholar 

  2. Castro, G., Boswell, C.A. & Northrup, S.H. J. Biomol. Struct. Dyn. 16, 413–424 (1998).

    Article  CAS  Google Scholar 

  3. Liang, Z.X., Nocek, J.M., Kurnikov, I.V., Beratan, D.N. & Hoffman, B.M. J. Am. Chem. Soc. 122, 3552–3553 (2000).

    Article  CAS  Google Scholar 

  4. Nocek, J.M. et al. Chem. Rev. 96, 2459–2489 (1996).

    Article  CAS  Google Scholar 

  5. Ubbink, M. & Bendall, D.S. Biochemistry 36, 6326–6335 (1997).

    Article  CAS  Google Scholar 

  6. Qin, L. & Kostic, N.M. Biochemistry 32, 6073–6080 (1993).

    Article  CAS  Google Scholar 

  7. Hippler, M., Drepper, F., Haehnel, W. & Rochaix, J.D. Proc. Natl. Acad. Sci. USA 95, 7339–7344 (1998).

    Article  CAS  Google Scholar 

  8. Malatesta, F. et al. Biochem. J. 315, 909–916 (1996).

    Article  CAS  Google Scholar 

  9. Peerey, L.M., Brothers, H.M., Hazzard, J.T., Tollin, G. & Kostic, N.M. Biochemistry 30, 9297–9304 (1991).

    Article  CAS  Google Scholar 

  10. Nar, H., Messerschmidt, A., Huber, R., van de Kamp, M. & Canters, G.W. J. Mol. Biol. 221, 765–772 (1991).

    Article  CAS  Google Scholar 

  11. Nar, H., Messerschmidt, A., Huber, R., van de Kamp, M. & Canters, G.W. J. Mol. Biol. 218, 427–447 (1991).

    Article  CAS  Google Scholar 

  12. Mikkelsen, K.V., Skov, L.K., Nar, H. & Farver, O. Proc. Natl. Acad. Sci. USA 90, 5443–5445 (1993).

    Article  CAS  Google Scholar 

  13. van de Kamp, M., Floris, R., Hali, F.C. & Canters, G.W. J. Am. Chem. Soc. 112, 907–908 (1990).

    Article  CAS  Google Scholar 

  14. van Amsterdam, I.M.C. et al. Chem. Eur. J. 7, 2398–2406 (2001).

    Article  CAS  Google Scholar 

  15. Canters, G.W., Hill, H.A.O., Kitchen, N.A. & Adman, E.T. J. Magn. Reson. 57, 1–23 (1984).

    CAS  Google Scholar 

  16. Bain, A.D. & Duns, G.J. Can. J. Chem. 74, 819–824 (1996).

    Article  CAS  Google Scholar 

  17. Page, C.C., Moser, C.C., Chen, X. & Dutton, P.L. Nature 402, 47–52 (1999).

    Article  CAS  Google Scholar 

  18. Beratan, D.N. & Onuchic, J.N. In Biological electron transfer. (ed. Bendall, D.S.) 23–42 (Bios Scientific Publishers, Oxford; 1996).

    Google Scholar 

  19. Gray, H.B., Malmström, B.G. & Williams, R.J.P. J. Biol. Inorg. Chem. 5, 551–559 (2000).

    Article  CAS  Google Scholar 

  20. Kurnikov, I.V., Wenzel, W. & Beratan, D.N. HARLEM http://www.kurnikov.org/harlem_main.html (Biomolecular Modeling package, University of Pittsburgh; 2000)

    Google Scholar 

  21. Ponce, A., Gray, H.B. & Winkler, J.R. J. Am. Chem. Soc. 122, 8187–8191 (2000).

    Article  CAS  Google Scholar 

  22. Tezcan, F.A., Crane, B.R., Winkler, J.R. & Gray, H.B. Proc. Natl. Acad. Sci. USA 98, 5002–5006 (2001).

    Article  CAS  Google Scholar 

  23. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  24. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  25. Jones, T.A., Zhou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  26. Hubbard, S.J. & Thornton, J.M. NACCESS (Department of Biochemistry and Molecular Biology, University College London; 1993).

    Google Scholar 

  27. Kraulis, P. J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  28. Esnouf, R. M. J. Mol. Graph. Model. 15, 132–& (1997).

    Article  CAS  Google Scholar 

  29. Merritt, E. A. & Bacon, D. J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  30. DeLano, W.L. The PyMOL Molecular Graphics System. http://pymol.sourceforge.net/ (DeLano Scientific, San Carlos, California; 2001)

Download references

Acknowledgements

We thank M.Ph. Verbeet and L.J.C. Jeuken for their help with the mutagenesis, C. Erkelens for his technical assistance during NMR measurements, A.D. Bain for his advice in using the MEX/MEXICO programs, C.C. Moser and P.L. Dutton for providing the ET Rates software and I.V. Kurnikov for his help in using the HARLEM program. This work is supported in part by grants of the EU, the National Research Council of Italy (to A.Mer., D.C. and G.R.) and the Deutsche Forschungsgemeinschaft (to O.E. and A.Mes.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard W. Canters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Amsterdam, I., Ubbink, M., Einsle, O. et al. Dramatic modulation of electron transfer in protein complexes by crosslinking. Nat Struct Mol Biol 9, 48–52 (2002). https://doi.org/10.1038/nsb736

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing