Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A unique fold of phospholipase C-β mediates dimerization and interaction with Gαq

Abstract

GTP-bound subunits of the Gq family of Gα subunits directly activate phospholipase C-β (PLC-β) isozymes to produce the second messengers inositol 1,4,5-trisphosphate and diacylglycerol. PLC-βs are GTPase activating proteins (GAPs) that also promote the formation of GDP-bound, inactive Gβ subunits. Both phospholipase activation by Gα–GTP subunits and GAP activity require a C-terminal region unique to PLC-β isozymes. The crystal structure of the C-terminal region from an avian PLC-β, determined at 2.4 Å resolution, reveals a novel fold composed almost entirely of three long helices forming a coiled-coil that dimerizes along its long axis in an antiparallel orientation. The dimer interface is extensive (3,200 Å2), and, based on gel exclusion chromatography, full length PLC-βs are dimeric, indicating that PLC-βs likely function as dimers. Sequence conservation, mutational data and molecular modeling show that an electrostatically positive surface of the dimer contains the major determinants for binding Gβq. Effector dimerization, as highlighted by PLC-βs, provides a viable mechanism for regulating signaling cascades linked to heterotrimeric G proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the CT domain unique to PLC-βs.
Figure 2: Dimerization of CT domains and full length PLC-β.
Figure 3: Dimeric CTtΔ is highly electrostatically polarized.
Figure 4: Biochemical and structural characterization of CT domains of PLC-βs with Gαq.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Cullen, P.J. Curr. Biol. 11, 342–344 (2001).

    Article  Google Scholar 

  2. Chidiac, P. & Ross, E.M. J. Biol. Chem. 274, 19639–19643 (1999).

    Article  CAS  Google Scholar 

  3. Mukhopadhyay, S. & Ross, E.M. Proc. Natl. Acad. Sci. USA 96, 9539–9544 (1999).

    Article  CAS  Google Scholar 

  4. Kim, M.J., Min, D.S., Ryu, S.H. & Suh, P.-G. J. Biol. Chem. 273, 3618–3624 (1998).

    Article  CAS  Google Scholar 

  5. Schnabel, P. & Camps, M. Biochem. J. 330, 461–468 (1998).

    Article  CAS  Google Scholar 

  6. Zhang, W. & Neer, E.J. J. Biol. Chem. 23, 2503–2508 (2000).

    Google Scholar 

  7. Park, D., Jhon, D.-Y., Lee, C.-W., Ryu, S.H. & Rhee, S.G. J. Biol. Chem. 268, 3710–3714 (1993).

    CAS  PubMed  Google Scholar 

  8. Kim, C.G., Park, D. & Rhee, S.G. J. Biol. Chem. 271, 21187–21192 (1996).

    Article  CAS  Google Scholar 

  9. Waldo, G.L., Paterson, A., Boyer, J.L., Nicholas, R.A. & Harden, T.K. Biochem. J. 316, 559–568 (1996).

    Article  CAS  Google Scholar 

  10. Holm, L. & Sander, C. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  11. Scheffzek, K., Ahmadian, M.R. & Wittinghofer, A. Trends Biochem. Sci. 23, 257–262 (1998).

    Article  CAS  Google Scholar 

  12. Tesmer, J.J.G., Berman, D.M., Gilman, A.G. & Sprang, S.R. Cell 89, 251–261 (1997).

    Article  CAS  Google Scholar 

  13. Janin, J. Nature Struct. Biol. 4, 973–974 (1997).

    Article  CAS  Google Scholar 

  14. Wu, D., Jiang, H., Katz, A. & Simon, M.I. J. Biol. Chem. 268, 3704–3709 (1993).

    CAS  PubMed  Google Scholar 

  15. Paulssen, R.H., Woodson, J., Liu, Z. & Ross, E. J. Biol. Chem. 271, 26622–26629 (1996).

    Article  CAS  Google Scholar 

  16. Wang, T. et al. Proc. Natl. Acad. Sci. USA 96, 7843–7846 (1999).

    Article  CAS  Google Scholar 

  17. Grobler, J.A., Essen, L.-O., Williams, R.L. & Hurley, J.H. Nature Struct. Biol. 3, 788–795 (1996).

    Article  CAS  Google Scholar 

  18. Katchalski-Katzir, E. et al. Proc. Natl. Acad. Sci. USA 89, 2195–2199 (1992).

    Article  CAS  Google Scholar 

  19. Chang, M., Zhang, L., Tam, J.P. & Sanders-Bush, E. J. Biol. Chem. 275, 7021–7029 (2000).

    Article  CAS  Google Scholar 

  20. Venkatakrishnan, G. & Exton, J.H. J. Biol. Chem. 271, 5066–6072 (1996).

    Article  CAS  Google Scholar 

  21. Arkinstall, S., Chabert, C., Maundrell, K. & Peitsch, M. FEBS Lett. 364, 45–50 (1995).

    Article  CAS  Google Scholar 

  22. Bouvier, M. Nature Rev. Neurosci. 2, 274–286 (2001).

    Article  CAS  Google Scholar 

  23. Jordan, J.D., Landau, E.M. & Iyengar, R. Cell 103, 193–200 (2000).

    Article  CAS  Google Scholar 

  24. Brandt, D.R., Asano, T., Pedersen, S.E. & Ross, E.M. Biochemistry 22, 4357–4362 (1983).

    Article  CAS  Google Scholar 

  25. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  26. Sheldrick, G.M. SHELX86 – Program for crystal structural solution 1997 edn (University of Gottingen, Gottingen; 1986).

    Google Scholar 

  27. Collaborative Computational Project, Number 4 Acta Crystallogr. D 50, 760–763 (1994).

  28. Cowtan, K.D. Joint CCP4 and ESF-EACBM newsletter on protein crystallography 31, 34–38 (1994).

    Google Scholar 

  29. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  30. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  31. Sondek, J., Lambright, D.G., Noel, J.P., Hamm, H.E. & Sigler, P.B. Nature 372, 276–279 (1994).

    Article  CAS  Google Scholar 

  32. Jeanmougin, F., Thompson, J.D., Gouy, M., Higgins, D.G. & Gibson, T.J. Trends Biochem. Sci. 23, 403–405 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Pham and S. Foster for technical assistance, H. Ke and L. Pedersen (NIEHS) for help in data collection and D. Worthylake and M. Pliske for technical assistance and critical reading of the manuscript. We would also like to thank the staff at beamline 5-1 of the Stanford Synchotron Research Laboratories, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy. J.S. and K.H. acknowledge support from the NIH. J.S. also acknowledges support from the Pew Charitable Trusts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Sondek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, A., Waldo, G., Harden, T. et al. A unique fold of phospholipase C-β mediates dimerization and interaction with Gαq. Nat Struct Mol Biol 9, 32–36 (2002). https://doi.org/10.1038/nsb731

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing