Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of N-myristoyltransferase with bound myristoylCoA and peptide substrate analogs

Abstract

N-myristoyltransferase (Nmt) attaches myristate to the N-terminal glycine of many important eukaryotic and viral proteins. It is a target for anti-fungal and anti-viral therapy. We have determined the structure, to 2.9 Å resolution, of a ternary complex of Saccharomyces cerevisiae Nmt1p with bound myristoylCoA and peptide substrate analogs. The model reveals structural features that define the enzyme's substrate specificities and regulate the ordered binding and release of substrates and products. A novel catalytic mechanism is proposed involving deprotonation of the N-terminal ammonium of a peptide substrate by the enzyme's C-terminal backbone carboxylate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative regions of electron density.
Figure 2: Nmt1p with bound S-(2-oxo)pentadecyl-CoA and SC-58272.
Figure 3: Contacts between S-(2-oxo)pentadecylCoA and Nmt1p.
Figure 4: Contacts between SC-58272 and Nmt1p.
Figure 5: Active site and proposed reaction mechanism.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Towler, D.A. et al. Purification and characterization of myristoylCoA:protein N-myristoyltransferase. Proc. Natl. Acad. Sci. USA 84, 2708–2712 (1987).

    Article  CAS  Google Scholar 

  2. Boutin, J. Myristoylation. Cell. Signal. 9, 15–35 (1997).

    Article  CAS  Google Scholar 

  3. Bhatnagar, R. S. & Gordon, J. I. Understanding covalent modifications of proteins by lipids: where cell biology and biophysics mingle. Trends Cell Biol. 7, 14–18 (1997).

    Article  CAS  Google Scholar 

  4. Bryant, M. L. et al. Incorporation of 12-methoxydodecanoate into the human immunodeficiency virus I gag polyprotein precursor inhibits its proteolytic processing and viral production in a chronically infected human lymphoid cell line. Proc. Natl. Acad. Sci. USA 88, 2055–2059 (1991).

    Article  CAS  Google Scholar 

  5. Duronio, R. J., Towler, D. A., Heuckeroth, R. O. & Gordon, J. I. Disruption of the yeast N-myristoyl transferase gene causes recessive lethality. Science 243, 796–800 (1989).

    Article  CAS  Google Scholar 

  6. Weinberg, R. A. et al. Genetic studies reveal that myristoylCoA:protein N- myristoyltransferase is an essential enzyme in Candida albicans. Mol. Microbiol. 16, 241–250 (1995).

    Article  CAS  Google Scholar 

  7. Lodge, J. K., Jackson-Machelski, E., Toffaletti, D. L., Perfect, J. R. & Gordon, J. I. Targeted gene replacement demonstrates that myristoylCoA:protein N-myristoyltransferase is essential for viability of Cryptococcus neoformans. Proc. Natl. Acad. Sci. USA 91, 12008–12012 (1994).

    Article  CAS  Google Scholar 

  8. Sikorski, J. A. et al. Selective peptidic and peptidomimetic inhibitors of Candida albicans myristoylCoA:protein N-myristoyltransferase: A new approach to antifungal therapy. Biopolymers 43, 43–71 (1997).

    Article  CAS  Google Scholar 

  9. White, T. C., Marr, K. A. & Bowden, P. A. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11, 382–402 (1998).

    Article  CAS  Google Scholar 

  10. Rudnick, D. A. et al. Kinetic and structural evidence for a sequential ordered Bi Bimechanism of catalysis by Saccharomyces cerevisiae myristoylCoA:protein N myristoyltransferase. J. Biol. Chem. 266, 9732–9739 (1991).

    CAS  PubMed  Google Scholar 

  11. Bhatnagar, R. S. et al. Titration calorimetric analysis of acylCoA recognition by myristoylCoA:protein N-myristoyltransferase. Biochemistry 36, 6700–6708 (1997).

    Article  CAS  Google Scholar 

  12. Rocque, W. J., McWherter, C. A., Wood, D. C. & Gordon, J. I. A comparative analysis of the kinetic mechanism and peptide substrate specificity of human and Saccharomyces cerevisiae myristoylCoA:protein N-myristoyltransferase. J. Biol. Chem. 268, 9964–9971 (1993).

    CAS  PubMed  Google Scholar 

  13. Weston, S. A. et al. Crystal structure of the anti-fungal targed N-myristoyltransferase. Nature Struct. Biol. 5, 213–221 (1998).

    Article  CAS  Google Scholar 

  14. Paige, L. A., Zheng, G-Q., DeFrees, S. A., Cassady, J. M. & Geahlen, R. L. S-(2- oxopentadecyl)-CoA, a nonhydrolyzable analog of myristoylCoA, is a potent inhibitor of myristoylCoA:protein N-myristoyltransferase. J. Med. Chem., 32, 1665–1667 (1989).

    Article  CAS  Google Scholar 

  15. Devadas, B. et al. Design and synthesis of potent and selective dipeptide inhibitors of Candida albicans myristoylCoA:protein N-myristoyltransferase. J. Med. Chem., 38, 1837–1840 (1995).

    Article  CAS  Google Scholar 

  16. Rudnick, D. A. et al. Analogs of palmitoylCoA that are substrates for myristoylCoA:protein N-myristoyltransferase. Proc. Natl. Acad. Sci. USA 89, 10507–10511 (1992).

    Article  CAS  Google Scholar 

  17. Towler, D. A., Gordon, J. I., Adams, S. P. & Glaser, L. The biology and enzymology of eukaryotic protein acylation. Annu. Rev. Biochem. 57, 69–99 (1988).

    Article  CAS  Google Scholar 

  18. Bairoch, A., Bucher, P. & Hofmann, K. The PROSITE database, its status in 1997. Nucleic Acids Res. 25, 217–221 (1997).

    Article  CAS  Google Scholar 

  19. Zhang, L., Jackson-Machelski, E. & Gordon, J. I. Genetic and biochemical studies of S. cerevisiae myristoylCoA:protein N-myristoyltransferase mutants. J. Biol. Chem. 271, 33131–33140 (1996).

    Article  CAS  Google Scholar 

  20. Peseckis, S.M. & Resh, M.D. Fatty acyl transfer by N-myristyl transferase is dependent upon conserved cysteine and histidine residues. J. Biol. Chem. 269, 30888–30892 (1994).

    CAS  PubMed  Google Scholar 

  21. Rudnick, D. A., Johnson, R. L. & Gordon, J. I. Studies of the catalytic activities and substrate specificities of Saccharomyces cerevisiae myristoylCoA:protein N-myristoyltransferase deletion mutants and human/yeast Nmt chimeras in Eschericia coli and S. cerevisiae . J. Biol. Chem. 267, 23852–23861 (1992).

    CAS  PubMed  Google Scholar 

  22. Zheng, W., Johnston, S. A. & Joshua-Tor, L. The unusual active site of Gal6/bleomycin hydrolase can act as a carboxypeptidase, aminopeptidase, and peptide ligase. Cell 93, 103–109 (1998).

    Article  CAS  Google Scholar 

  23. Hendrickson, W. A., Horton, J. R. & LeMaster, D. Selenomethionine proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9, 1665–1672 (1990).

    Article  CAS  Google Scholar 

  24. Otwinowski, Z. in Proceedings of the CCP4 study weekend: data collection and processing. (eds Sawyers, L. Isaacs, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, UK; 1993).

    Google Scholar 

  25. Terwilliger, T. C., Kim, S.-H. & Eisenberg, D. Generalized method of determining heavy-atom positions using the difference Patterson function. Acta Crystallogr. A 43, 1–5 (1987).

    Article  Google Scholar 

  26. De La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Meth. Enz. 276, 472–493 (1997).

    Article  CAS  Google Scholar 

  27. Abrahams, J. P. & Leslie, A. G. W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D52, 32–42 (1996).

    Google Scholar 

  28. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  29. Terwilliger, T. C. & Eisenberg, D. Unbiased Three-Dimensional Refinement of Heavy-Atom Parameters by Correlation of Origin-Removed Patterson Functions. Acta Crystallogr. A39, 813–817 (1983).

    Article  CAS  Google Scholar 

  30. Hall, T. M. T., Porter, J. A., Beachy, P. A. & Leahy, D. J. A potential catalytic site revealed by the 1.7Å crystal structure of the amino-terminal signalling domain of Sonic hedgehog. Nature 378, 212–216 (1995).

    Article  CAS  Google Scholar 

  31. Brünger, A. T. et al. Crystallography and NMR system: a new software system for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  32. Brünger, A. T. The free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–474 (1992).

    Article  Google Scholar 

  33. Carson, M. Ribbons. Meth. Enz. 277, 493–505 (1997).

    Article  CAS  Google Scholar 

  34. Nicholls, A. & Honig, B. A rapid finite difference algorithm, utilizing successive over- relaxation to solve the Poisson-Boltzman equation. J. Comput. Chem. 12, 435–445 (1991).

    Article  CAS  Google Scholar 

  35. Engh, R. A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr. A47, 392–400 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Devadas, J. Sikorski and C. McWherter (G.D. Searle) for SC-58272, C. Ogata at NSLS, and M. Soltis, and P. Kuhn at SSRL for help with data collection, and J. Kuriyan for helpful comments. This work was supported in part by grants from the NIH and Monsanto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Waksman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatnagar, R., Fütterer, K., Farazi, T. et al. Structure of N-myristoyltransferase with bound myristoylCoA and peptide substrate analogs. Nat Struct Mol Biol 5, 1091–1097 (1998). https://doi.org/10.1038/4202

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing