Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a Numb PTB domain–peptide complex suggests a basis for diverse binding specificity

Abstract

The phosphotyrosine-binding (PTB) domain of Numb, a protein involved in asymmetric cell division, has recently been shown to bind to the adapter protein Lnx through an LDNPAY sequence, to the Numb-associated kinase (Nak) through a sequence that does not contain an NPXY motif and to GP(p)Y-containing peptides obtained from library screening. We show here that these diverse peptide sequences bind with comparable affinities to the Numb PTB domain at a common binding site on the surface of the protein. The NMR structure of the Numb PTB domain in complex with a GPpY-containing peptide reveals a novel mechanism of binding with the peptide in a helical turn that does not hydrogen bond to the PTB domain β-sheet. These results suggest that PTB domains can potentially have multiple modes of peptide recognition and provide a structural basis from which the multiple functions of the Numb PTB domain during asymmetric cell division could arise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Competition binding data for unlabeled peptides with a complex of the dNumb PTB domain and fluorescein-labeled Nak peptide.
Figure 2: Solution structure of the dNumb PTB domain–GPpY peptide complex.
Figure 3: Structure-based alignment34 of sequences of the dNumb, X1114, Shc8 and IRS-110 PTB domains, with residues of the dNumb PTB domain highlighted in green for helices and yellow for β-strands.
Figure 4: ad, Surface representations (using MOLMOL47) of PTB domains in complex with target peptides (in yellow), with blue representing positive and red negative electrostatic potential.
Figure 5: a, 15N-1H correlation spectrum of the dNumb PTB domain–GPpY peptide complex.

Similar content being viewed by others

References

  1. Kavanaugh, W.M. & Williams, L.T. An alternative to SH2 domains for binding tyrosine-phosphorylated proteins. Science 266, 1862–1865 ( 1994).

    Article  CAS  Google Scholar 

  2. Blaikie, P., et al. A region in Shc distinct from the SH2 domain can bind tyrosine- phosphorylated growth factor receptors. J. Biol. Chem. 269, 32031–32034 (1994).

    CAS  Google Scholar 

  3. van der Geer, P. et al. A conserved amino-terminal Shc domain binds to phosphotyrosine motifs in activated receptors and phosphopeptides. Curr. Biol. 5, 404–412 ( 1995).

    Article  CAS  Google Scholar 

  4. Kavanaugh, W.M., Turck, C.W. & Williams, L.T. PTB domain binding to signaling proteins through a sequence motif containing phosphotyrosine. Science 268, 1177–1179 (1995).

    Article  CAS  Google Scholar 

  5. Trüb, T. et al. Specificity of the PTB domain of Shc for beta turn-forming pentapeptide motifs amino-terminal to phosphotyrosine. J. Biol. Chem. 270, 18205–18208 ( 1995).

    Article  Google Scholar 

  6. Wolf, G. et al. PTB domains of Shc and IRS-1 have distinct but overlapping binding specificities. J. Biol. Chem. 270, 27407 –27510 (1995).

    Article  CAS  Google Scholar 

  7. Borg, J.P. & Margolis, B. Function of PTB domains. Curr. Topics Microbiol. Immunol. 228, 23– 38 (1998).

    CAS  Google Scholar 

  8. Zhou, M.M. et al. Structure and ligand recognition of the phosphotyrosine binding domain of Shc. Nature 378, 584– 592 (1995).

    Article  CAS  Google Scholar 

  9. Zhou, M.M., et al. Structural basis for IL-4 receptor phosphopeptide recognition by the IRS-1 PTB domain. Nature Struct. Biol. 3, 388–393 (1996).

    Article  CAS  Google Scholar 

  10. Eck, M.J., Dhe-Paganon, S., Trüb, T., Nolte, R.T. & Shoelson, S.E. Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell 85, 695–705 ( 1996).

    Article  CAS  Google Scholar 

  11. van der Geer, P. et al. Identification of residues that control specific binding of the Shc phosphotyrosine-binding domain to phosphotyrosine sites. Proc. Natl. Acad. Sci. USA 93, 963– 968 (1996).

    Article  CAS  Google Scholar 

  12. Waksman, G. et al. Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine phosphorylated peptides. Nature 358, 646–653 ( 1992).

    Article  CAS  Google Scholar 

  13. Borg, J.P., Ooi, J., Levy, E. & Margolis, B. The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol. Cell. Biol. 16, 6229–6241 (1996).

    Article  CAS  Google Scholar 

  14. Zhang, Z.T. et al. Sequence-specific recognition of the internalization motif of the Alzheimer's amyloid precursor protein by the X11 PTB domain. EMBO J. 16, 6141–6150 ( 1997).

    Article  CAS  Google Scholar 

  15. Zambrano, N. et al. Interaction of the phosphotyrosine interaction/phosphotyrosine binding- related domains of Fe65 with wild-type and mutant Alzheimer's beta- amyloid precursor proteins. J. Biol. Chem. 272, 6399–6405 (1997).

    Article  CAS  Google Scholar 

  16. Bork, P. & Margolis, B. A phosphotyrosine interaction domain. Cell 80, 693–694 (1995).

    Article  CAS  Google Scholar 

  17. Uemura, T., Shepherd, S., Ackerman, L., Jan, L.Y. & Jan, Y.N. numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58, 349–360 ( 1989).

    Article  CAS  Google Scholar 

  18. Knoblich, J.A. Mechanisms of asymmetric cell division during animal development. Curr. Opin. Cell Biol. 9, 833–841 (1997).

    Article  CAS  Google Scholar 

  19. Bodmer, R., Carretto, R. & Jan, Y.N. Neurogenesis of the peripheral nervous system in Drosophila embryos: DNA replication patterns and cell lineages. Neuron 3, 21–32 (1989).

    Article  CAS  Google Scholar 

  20. Rhyu, M.S., Jan, L.Y. & Jan, Y.N. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76, 477–491 (1994).

    Article  CAS  Google Scholar 

  21. Knoblich, J.A., Jan, L.Y. & Jan, Y.N. Asymmetric segregation of Numb and Prospero during cell division. Nature 377, 624– 627 (1995).

    Article  CAS  Google Scholar 

  22. Zhong, W., Feder, J.N., Jiang, M.M., Jan, L.Y. & Jan, Y.N. Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17, 43–53 (1996).

    Article  CAS  Google Scholar 

  23. Verdi, J.M., et al. Mammalian NUMB is an evolutionarily conserved signaling adapter protein that specifies cell fate. Curr. Biol. 6, 1134–1145 (1996).

    Article  CAS  Google Scholar 

  24. Zhong, W., Jiang, M.M., Weinmaster, G., Jan, L.Y. & Jan, Y.N. Differential expression of mammalian Numb, Numblike and Notch1 suggests distinct roles during mouse cortical neurogenesis. Development 124, 1887– 1897 (1997).

    CAS  PubMed  Google Scholar 

  25. Salcini, A.E. et al. Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module. Genes Dev. 11, 2239–2249 (1997).

    Article  CAS  Google Scholar 

  26. Knoblich, J.A., Jan, L.Y. & Jan, Y.N. The N terminus of the Drosophila Numb protein directs membrane association and actin-dependent asymmetric localization. Proc. Natl. Acad. Sci. USA 94, 13005– 13010 (1997).

    Article  CAS  Google Scholar 

  27. Spana, E.P. & Doe, C.Q. Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron 17, 21–26 (1996).

    Article  CAS  Google Scholar 

  28. Guo, M., Jan, L.Y. & Jan, Y.N. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17, 27–41 (1996).

    Article  Google Scholar 

  29. Chien, C.T., Wang, S., Rothenberg, M., Jan, L.Y. & Jan, Y.N. Numb-associated kinase interacts with the phosphotyrosine binding domain of Numb and antagonizes the function of Numb in vivo. Mol. Cell. Biol. 18, 598–607 (1998).

    Article  CAS  Google Scholar 

  30. Li, S.C., et al. High-affinity binding of the Drosophila Numb phosphotyrosine-binding domain to peptides containing a Gly-Pro-(p)Tyr motif. Proc. Natl. Acad. Sci. USA 94, 7204–7209 (1997).

    Article  CAS  Google Scholar 

  31. Dho, S.E., et al. The mammalian Numb phosphotyrosine binding domain: characterization of binding specificity and identification of a novel PDZ domain-containing Numb binding protein, Lnx. J. Biol. Chem. 273, 9179–9187 (1998).

    Article  CAS  Google Scholar 

  32. Zwahlen, C., Vincent, S.J.F., Gardner, K.H. & Kay, L.E. Significantly improved resolution for NOE correlations from valine and isoleucine (Cλ2) methyl groups in 15N,13C and 15N,13C,2H-labeled proteins. J. Am. Chem. Soc. 120, 4825–4831 (1998).

    Article  CAS  Google Scholar 

  33. Nilges, M., Macias, M.J., O'Donoghue, S.I. & Oschkinat, H. Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. J. Mol. Biol. 269, 408– 422 (1997).

    Article  CAS  Google Scholar 

  34. Holm, L. & Sander, C. Touring protein fold space with Dali/FSSP. Nucleic Acids Res. 26, 316– 319 (1998).

    Article  CAS  Google Scholar 

  35. Yaich, L. et al. Functional analysis of the Numb phosphotyrosine-binding domain using site-directed mutagenesis. J. Biol. Chem. 273 , 10381–10388 (1998).

    Article  CAS  Google Scholar 

  36. Farmer, B.T., et al. Localizing the NADP+ binding site on the MurB enzyme by NMR. Nature Struct. Biol. 3, 995– 997 (1996).

    Article  CAS  Google Scholar 

  37. Kraut, R. & Campos-Ortega, J.A. inscuteable, a neural precursor gene of Drosophila, encodes a candidate for a cytoskeleton adaptor protein. Dev. Biol. 174, 65–81 (1996).

    Article  CAS  Google Scholar 

  38. Kraut, R., Chia, W., Jan, L.Y., Jan, Y.N. & Knoblich, J.A. Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383, 50– 55 (1996).

    Article  CAS  Google Scholar 

  39. Kim, S.K. Polarized signaling: basolateral receptor localization in epithelial cells by PDZ-containing proteins. Curr. Opin. Cell Biol. 9, 853–859 (1997).

    Article  CAS  Google Scholar 

  40. Neri, D., Szyperski, T., Otting, G., Senn, H. & Wüthrich, K. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28, 7510 –7516 (1989).

    Article  CAS  Google Scholar 

  41. Bax, A. Multidimensional nuclear magnetic resonance methods for protein studies. Curr. Opin. Struct. Biol. 4, 738–744 (1994).

    Article  CAS  Google Scholar 

  42. Kay, L.E. Field gradient techniques in NMR spectroscopy. Curr. Opin. Struct. Biol. 5, 674–681 ( 1995).

    Article  CAS  Google Scholar 

  43. Stein, E.G., Rice, L.M. & Brünger, A.T. Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J. Magn. Reson. 124, 154–164 (1997).

    Article  CAS  Google Scholar 

  44. Rice, L.M. & Brünger, A.T. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins: Struct. Funct. Genet. 19, 277 –290 (1994).

    Article  CAS  Google Scholar 

  45. Brünger, A.T., et al. Crystallography and NMR system: A new software system for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998 ).

    Article  Google Scholar 

  46. Brünger, A.T. (Yale University, New Haven, Connecticut; 1992).

  47. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51– 5, 29–32 (1996).

    Article  CAS  Google Scholar 

  48. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–86 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. N. Jan for kindly providing the Drosophila Numb cDNA. This work was supported by grants to J.D.F.-K. and L.E.K. from the National Cancer Institute of Canada (NCIC) and to T.P. from the Human Frontier Science Program, Asashi Chemical Company, the NCIC, and the Medical Research Council of Canada (MRC) and by Howard Hughes International Research Scholar awards to T.P. and L.E.K. T.P. is a Terry Fox Cancer Research Scientist of the NCIC. S.-C.L. is a post-doctoral fellow of the MRC. C.Z. and S.J.F.V. are recipients of Human Frontier Science Program fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie D. Forman-Kay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, SC., Zwahlen, C., Vincent, S. et al. Structure of a Numb PTB domain–peptide complex suggests a basis for diverse binding specificity. Nat Struct Mol Biol 5, 1075–1083 (1998). https://doi.org/10.1038/4185

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing