Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP

Abstract

The Rho-related small GTP-binding protein Cdc42 has a low intrinsic GTPase activity that is significantly enhanced by its specific GTPase-activating protein, Cdc42GAP. In this report, we present the tertiary structure for the aluminum fluoride-promoted complex between Cdc42 and a catalytically active domain of Cdc42GAP as well as the complex between Cdc42 and the catalytically compromised Cdc42GAP(R305A) mutant. These structures, which mimic the transition state for the GTP hydrolytic reaction, show the presence of an AlF 3 molecule, as was seen for the corresponding Ras–p120RasGAP complex, but in contrast to what has been reported for the Rho–Cdc42GAP complex or for heterotrimeric G protein α subunits, where AlF 4 was observed. The Cdc42GAP stabilizes both the switch I and switch II domains of Cdc42 and contributes a highly conserved arginine (Arg 305) to the active site. Comparison of the structures for the wild type and mutant Cdc42GAP complexes provides important insights into the GAP-catalyzed GTP hydrolytic reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Views of the complex between Cdc42 and the wild type Cdc42GAP.
Figure 2: Stereo view of an omit map for the complex between Cdc42 and the wild type Cdc42GAP, in which GDP, Mg2+ and AlF3, as well as atoms within 3.5 Å, were removed.
Figure 3: Comparison of the complexes between Cdc42 and the wild type Cdc42GAP and the Cdc42GAP(R305A) mutant.
Figure 4: Stereo superposition of the Cdc42-AIF-Cdc42GAP structure and the Giα1-AIF4-RGS4 complex19.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Mittal, R., Ahmadian, M.R., Goody, R. & Wittinghofer, F. Science 273, 115–117 ( 1996).

    Article  CAS  Google Scholar 

  2. Hoffman, G.R., Nassar, N., Oswald, R. & Cerione, R. J. Biol. Chem . 273, 4392–4399 ( 1998).

    Article  CAS  Google Scholar 

  3. Lancaster, C.A. et al. J. Biol. Chem. 269, 1137– 1142 (1994).

    CAS  PubMed  Google Scholar 

  4. Barford, E.T. et al. J. Biol. Chem. 268, 26059– 26062 (1993).

    Google Scholar 

  5. Kjeldgaard, M., Nyborg, J. & Clark, B.F.C. FASEB J. 10, 1347– 1368 (1996).

    Article  CAS  Google Scholar 

  6. Wei, Y. et al. Nature Struct. Biol. 4, 699– 703 (1997).

    Article  CAS  Google Scholar 

  7. Rittinger, K. et al. Nature 388, 693–697 (1997).

    Article  CAS  Google Scholar 

  8. Rittinger, K., Walker, P.A., Eccleston, J.F., Smerdon, S. & Gamblin, S. Nature 389, 758–762 (1997).

    Article  CAS  Google Scholar 

  9. Hirshberg M., Stockly R.W., Dodson G. & Webb M. Nature Struct. Biol . 4, 147–151 ( 1997).

    Article  CAS  Google Scholar 

  10. Feltham J.L. et al. Biochemistry 36, 8755– 8766 (1997).

    Article  CAS  Google Scholar 

  11. Sondeck, J., Lambright, D., Noel, J., Hamm, H. E. & Sigler, P. Nature 372, 276– 279 (1994).

    Article  Google Scholar 

  12. Coleman, D. et al. Science 265, 1405– 1412 (1994).

    Article  CAS  Google Scholar 

  13. Scheffzek, K. Science 277, 333–338 ( 1997).

    Article  CAS  Google Scholar 

  14. Maegly, K.A., Admiraal, S. & Herschlag, D. Proc. Natl. Acad. Sci. USA 93, 8160–8166 (1996).

    Article  Google Scholar 

  15. Noel, J.B., Hamm, H.E. & Sigler, P. Nature 366, 654– 663 (1993).

    Article  CAS  Google Scholar 

  16. Leonard, D.A., Lin, R., Cerione, R. A. & Manor, D. J. Biol. Chem. 273, 16210–16215 (1998).

    Article  CAS  Google Scholar 

  17. Zheng, Y., Bagrodia, S. & Cerione, R. J. Biol. Chem. 269, 18727– 18730 (1994).

    CAS  PubMed  Google Scholar 

  18. Sprang S. Science 277, 329–330 ( 1997).

    Article  CAS  Google Scholar 

  19. Tesmer, J.G., Berman, D.M., Gilman, A.G. & Sprang, S. R. Cell 89, 251–261 ( 1997).

    Article  CAS  Google Scholar 

  20. Hendrickson, W.A., Horton, J.R. & LeMaster, D.M. EMBO J. 9, 1665– 1672 (1990).

    Article  CAS  Google Scholar 

  21. Kabsch, W. J. Appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  22. Otwinowski, Z. & Minor, W. Meth. Enz. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  23. Leslie, A.G.W., Brick, P. & Wonacott, A.J. CCP4 News 18, 33– 39 (1986).

    Google Scholar 

  24. CCP4. Acta Crystallogr. D 50, 760–763 (1994).

  25. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  26. Read, R.J. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  27. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 ( 1991).

    Article  Google Scholar 

  28. Laskowski, R.A., McArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  29. Lee, B. & Richards, F.M. J. Mol. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  30. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  31. Merrit, E.A. and Murphy, M.E.P. Acta Crystallogr. D 50, 869–873 (1994).

    Google Scholar 

Download references

Acknowledgements

We thank S. Doublie for invaluable help and comments on this project. We thank R. Sweet for beamtime on X12C and the CHESS staff for help during data collection. We thank J. Stamos for excellent technical assistance, W. Wang for help and C. Westmiller for expert secretarial assistance. This work was supported by grants from the National Institutes of Health and the Human Frontiers Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Cerione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nassar, N., Hoffman, G., Manor, D. et al. Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP. Nat Struct Mol Biol 5, 1047–1052 (1998). https://doi.org/10.1038/4156

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing