Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A designed four helix bundle protein with native-like structure

Abstract

A 108 amino acid protein was designed and constructed from a reduced alphabet of seven amino acids. The 2.9 Å resolution X-ray crystal structure confirms that the protein is a four helix bundle, as it was designed to be. Hydrogen/deuterium exchange experiments reveal buried amide protons with protection factors in excess of 1 × 106 in the range characteristic of well protected protons in functional folded proteins (103–108) rather than protons in rapid exchange (0–102). The protein is monomeric at 1 mM, the concentration at which the exchange experiments were undertaken, indicating that the exchange factors are due to a unique stable tertiary structure fold, and not due to any higher order quaternary structure. Thermodynamic analysis provides an estimate of the free energy of folding of −9.3 kcal mole−1 at 25 °C, consistent with the free energy of folding derived from the protection factors of the most protected protons, indicating that global unfolding is required for exchange of the most protected protons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Crick, F.H.C. The origin of the genetic code. J. Mol. Biol., 38, 367–379 (1968)

    Article  CAS  Google Scholar 

  2. Osawa, S., Jukes, T.H., Watanabe, K. & Muto, A. Recent evidence for evolution of the genetic code. Microbiological Reviews, 56, 229–264 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bryson, J.W. et al. Protein design: A hierarchic approach. Science, 270, 935–941 (1995)

    Article  CAS  Google Scholar 

  4. Hecht, M.H., Richardson, J.S., Richardson, D.C. & Ogden, R.C. De novo design, expression, and characterization of felix: a four-helix bundle protein of native-like sequence. Science, 249, 884–891 (1990)

    Article  CAS  Google Scholar 

  5. Regan, L. & DeGrado, W.F. Characterization of a helical protein designed from first principles. Science, 241, 976–978 (1988)

    Article  CAS  Google Scholar 

  6. Lyu, P.C., Liff, M.I., Mary, L.A. & Kallenbach, N.R. Side chain contributions to the stability of alpha-helical structure in peptides. Science, 250, 669–673 (1990)

    Article  CAS  Google Scholar 

  7. Scholtz, J.M., Qian, H., Robbins, V.H. & Baldwin, R.L. The energetics of ion-pair and hydrogen-bonding interactions in a helical peptide. Biochemistry, 32, 9668–9676 (1993)

    Article  CAS  Google Scholar 

  8. Presnell, S.R. & Cohen, F.E. Topological distribution of four-(α-)helix bundles. Proc. Natl. Acad. Sci. U. S. A., 86, 6592–6596 (1989)

    Article  CAS  Google Scholar 

  9. Struthers, M.D., Cheng, R.P. & Imperiali, B. Design of a monomeric 23-residue polypeptide with defined tertiary structure. Science, 271, 342–345 (1996)

    Article  CAS  Google Scholar 

  10. Roy, S. et al. A protein designed by binary patterning of polar and nonpolar amino acids displays native-like properties. J. Am. Chem. Soc., 119, 5302–5306 (1997)

    Article  CAS  Google Scholar 

  11. Schafmeister, C.E., Miercke, L.J.W. & Stroud, R.M. Structure at 2.5 Å of a designed peptide that maintains solubility of membrane proteins. Science, 262, 734–738 (1993)

    Article  CAS  Google Scholar 

  12. Brunet, A.P. et al. The role of turns in the structure of an alpha-helical protein. Nature, 364, 355–358 (1993)

    Article  CAS  Google Scholar 

  13. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science, 235, 458–460 (1987)

    Article  Google Scholar 

  14. Chothia, C., Levitt, M. & Richardson, D. Structure of proteins: Packing of α-helices and pleated sheets. Proc. Natl. Acad. Sci. U S A, 74 (10), 4130–4134 (1977)

    Article  CAS  Google Scholar 

  15. Holmes, M.A. & Stenkamp, R.E. Structures of met and azidomet hemerythrin at 1. 66 Å resolution. J. Mol. Biol., 220, 723–737 (1991)

    Article  CAS  Google Scholar 

  16. Finzel, B.C., Weber, P.C., Hardman, K.D. & Salemme, F.R. Structure of ferricytochrome c′ from rhodospirillum molischianum at 1.67 Å resolution. Nature, 186, 627–643 (1985)

    CAS  Google Scholar 

  17. Chambers, J.L. & Stroud, R.M. Difference fourier refinement of the structure of DIP-trypsin at 1.5 Å with a minicomputer technique. Acta Crystallogr., B33, 1824–1837 (1977)

    Article  CAS  Google Scholar 

  18. Greenfield, N. & Fasman, G.D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry, 8, 4108–4116 (1969)

    Article  CAS  Google Scholar 

  19. Bai, Y., Milne, J.S., Mayne, L. & Englander, S.W. Protein stability parameters measured by hydrogen exchange. Proteins: Struct. Func. Gen., 20, 4–14 (1994)

    Article  CAS  Google Scholar 

  20. Bai, Y., Milne, J.S., Mayne, L. & Englander, S.W. Primary structure effects on peptide group hydrogen exchange. Proteins: Struct. Func. Gen., 17, 75–86 (1993)

    Article  CAS  Google Scholar 

  21. Hughson, F.M., Wright, P.E. & Baldwin, R.L. Structural characterization of a partly folded apomyoglobin intermediate. Science, 249, 1544–1548 (1990)

    Article  CAS  Google Scholar 

  22. Pan, Y. & Briggs, M.S. Hydrogen exchange in native and alcohol forms of ubiquitin. Biochemistry, 31, 11405–11412 (1992)

    Article  CAS  Google Scholar 

  23. Radford, S.E., Buck, M., Topping, K.D., Dobson, C.M. & Evans, P.A. Hydrogen exchange in native and denatured states of hen egg-white lysozyme. Prot. Struc. Func. Gen., 14, 237–248 (1992)

    Article  CAS  Google Scholar 

  24. Handel, T.M., Williams, S.A. & DeGrado, W.F. Metal ion-dependent modulation of the dynamics of a designed protein. Science, 261, 879–885 (1993)

    Article  CAS  Google Scholar 

  25. Privalov, P.L. & Khechinashvili, N.N. A thermodynamic approach to the problem of stabilization of globular protein structure: A calorimetric study. J. Mol. Biol., 86, 665–684 (1974)

    Article  CAS  Google Scholar 

  26. Bryngelson, J.D., Onuchic, J.N., Socci, N.D. & Wolynes, P.G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins, 21, 167–195 (1995)

    Article  CAS  Google Scholar 

  27. Dill, K.A. and Chan, H.S. From levinthal to pathways to funnels. Nature Struct. Biol., 4, 10–19 (1997)

    Article  CAS  Google Scholar 

  28. DiRuggiero, J. et al. Characterization, cloning, and in vitro expression of the extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaeon, ES4. J. Biol. Chem., 268, 17767–17774 (1993)

    CAS  PubMed  Google Scholar 

  29. Bock, G.R. & Goode, J.A. (eds) Evolution of Hydrothermal Ecosystems on Earth (and Mars?). Wiley, Chichester (1996)

  30. Dill, K.A. et al. Principles of protein folding–a perspective from simple exact models. Prot. Sci., 4, 561–602 (1995)

    Article  CAS  Google Scholar 

  31. Maina, C.V. et al. An escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. Gene, 74, 365–373 (1988)

    Article  CAS  Google Scholar 

  32. Sarin, V.K., Kent, S.B.H., Tarn, J.P. & Merrifield, R.B. Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal. Biochem., 117, 147–157 (1981)

    Article  CAS  Google Scholar 

  33. Otwinowski, Z. and Minor, W. In Data Collecting and Processing (Sawyer, L., Isaacs, N., and Baily, S. eds) 556–562 (SERC Daresbury Laboratory, Warrington, UK; 1993)

    Google Scholar 

  34. Brünger, A.T. Extension of molecular replacement: a new search strategy based on patterson correlation refinement. Acta Crystallgr., A46, 46–57 (1990)

    Article  Google Scholar 

  35. Jones, T.A., Zou, J.Y., Cowan, S.M. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr., A47, 110–119 (1991)

    Article  CAS  Google Scholar 

  36. Schellman, J.A. Solvent denaturation. Biopolymers, 17, 1305–1322 (1978)

    Article  CAS  Google Scholar 

  37. Chen, B.L. & Schellman, J.A. Low-temperature unfolding of a mutant of phage T4 lysozyme. 1. Equilibrium studies. Biochemistry, 28, 685–691 (1989)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Stroud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schafmeister, C., LaPorte, S., Miercke, L. et al. A designed four helix bundle protein with native-like structure. Nat Struct Mol Biol 4, 1039–1046 (1997). https://doi.org/10.1038/nsb1297-1039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1297-1039

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing