Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Encapsulating an amino acid in a DNA fold

Abstract

Here we present the first solution structure of a ligand–DNA aptamer complex. Our NMR-molecular dynamics structural studies of the interaction between argininamide and a DNA stem-loop complex establishes that the hairpin loop DNA binding site undergoes an adaptive conformational transition on complex formation. The tip of the DNA loop folds down towards the stem and sandwiches the bound argininamide between reversed Hoogsteen A•C and Watson–Crick G•C base pairs. The argininamide is encapsulated within the structured DNA loop and is stabilized by an intricate set of intermolecular hydrogen bonds and stacking interactions. The structure of the complex lays out the molecular principles defining both the architecture of the internal cavity and the recognition elements that could contribute to ligand discrimination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Steitz, T.A. Structural studies of protein-nucleic acid interactions: the sources of sequence specificity. Quart. Revs. Biophys. 23, 205–280 (1990).

    Article  CAS  Google Scholar 

  2. Joyce, G.F. In vitro evolution of nucleic acids. Curr. Opin. Struct. Biol. 4, 331–336 (1994).

    Article  CAS  Google Scholar 

  3. Ellington, A. & Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 812–822 (1990).

    Article  Google Scholar 

  4. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  Google Scholar 

  5. Robertson, D.L. & Joyce, G.F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467–468 (1990).

    Article  CAS  Google Scholar 

  6. Gold, L., Polisky, B., Uhlenbeck, O.C. & Yarus, M. Diversity of oligonucleotide functions. Annu. Rev. Biochem. 64, 763–797 (1995).

    Article  CAS  Google Scholar 

  7. Lorsch, J.R. & Szostak, J.W. Chance and necessity in the selection of nucleic acid catalysts. Acc. Chem. Res. 29, 103–110 (1996).

    Article  CAS  Google Scholar 

  8. Fan, P., Suri, A.K., Fiala, R., Live, D. & Patel, D.J. Molecular recognition in the FMN-RNA aptamer complex. J. Mol. Biol. 258, 480–500 (1996).

    Article  CAS  Google Scholar 

  9. Yang, Y., Kochoyan, M., Burgstaller, P., Westhof, E. & Famulok, M. Structural basis of ligand discrimination by two related RNA aptamers revealed by NMR spectroscopy. Science 272, 1343–1347 (1996).

    Article  CAS  Google Scholar 

  10. Jiang, F., Kumar, R.A., Jones, R.A. & Patel, D.J. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature 382, 183–186 (1996).

    Article  CAS  Google Scholar 

  11. Dieckmann, T., Suzuki, E., Nakamura, G.K. & Feigon, J. Solution structure of an ATP-binding RNA aptamer reveals a novel fold. RNA 2, 628–640 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ye, X., Gorin, A., Ellington, A.D. & Patel, D.J. Deep penetration of an α-helix into a widened RNA major groove in the HIV-1 rev peptide-RNA aptamer complex. Nature Struct. Biol. 3, 1026–1033 (1996).

    Article  CAS  Google Scholar 

  13. Ellington, A.D. & Szostak, J.W. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355, 850–852 (1992).

    Article  CAS  Google Scholar 

  14. Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H. & Toole, J.J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566 (1992).

    Article  CAS  Google Scholar 

  15. Breaker, R.R. & Joyce, G.F. A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity. Chem. Biol. 2, 665–660 (1995).

    Article  Google Scholar 

  16. Huizenga, D.E. & Szostak, J.W. A DNA aptamer that binds adenosine and ATP. Biochemistry 34, 656–665 (1995).

    Article  CAS  Google Scholar 

  17. Li, Y., Geyer, C.R. & Sen, D. Recognition of anionic porphyrins by DNA aptamers. Biochemistry 35, 6911–6922 (1996).

    Article  CAS  Google Scholar 

  18. Harada, K. & Frankel, A.D. Identification of two novel arginine binding DNAs. The EMBO Journal 14, 5798–5811 (1995).

    Article  CAS  Google Scholar 

  19. Connell, G.J., Illangesekare, M. & Yarus, M. Three small ribooligonucleotides with specific arginine sites. Biochemistry 32, 5497–5502 (1993).

    Article  CAS  Google Scholar 

  20. Famulok, M. Molecular recognition of amino acids by RNA aptamers: An L-citrulline binding RNA motif and its evolution into an L-arginine binder. J. Am. Chem. Soc. 116, 1698–1706 (1994).

    Article  CAS  Google Scholar 

  21. Geiger, A., Burgstaller, P., von der Eltz, H., Roeder, A. & Famulok, M. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucl. Acids Res. 24, 1029–1036 (1996).

    Article  CAS  Google Scholar 

  22. Tao, J. & Frankel, A.D. Arginine binding RNAs resembling TAR identified by in vitro selection. Biochemistry 35, 2229–2238 (1996).

    Article  CAS  Google Scholar 

  23. Puglisi, J.D., Chen, L., Frankel, A.D. & Williamson, J.R. Role of RNA structure in arginine recognition of TAR RNA. Proc. Natl. Acad. Sci. USA 90, 3680–3684 (1993).

    Article  CAS  Google Scholar 

  24. Calnan, B.J., Tidor, B., Biancalana, S., Hudson, D. & Frankel, A.D. Arginine-mediated RNA recognition: the arginine fork. Science 252, 1167–1171 (1991).

    Article  CAS  Google Scholar 

  25. Puglisi, J.D., Chen, L., Blanchard, S. & Frankel, A.D. Solution structure of a bovine immunodeficiency virus Tat-TAR peptide-RNA complex. Science 270, 1200–1203 (1995).

    Article  CAS  Google Scholar 

  26. Ye, X., Kumar, R.A. & Patel, D.J. Molecular recognition in the bovine immunodeficiency virus tat peptide-Tar RNA complex. Chem. Biol. 2, 827–840 (1995).

    Article  CAS  Google Scholar 

  27. Cram, D.J. & Cram, J.M. Container Molecules and their Guests. (Royal Society of Chemistry, Cambridge, UK, 1994).

    Google Scholar 

  28. Brünger, A.T. X-PLOR, A system for X-ray crystallography and NMR (Yale University Press, New Haven, CT, 1992).

    Google Scholar 

  29. Nicholls, A., Sharp, K.A. & Honig, B.H. Protein folding and association: insights from the interfacial and thermodynamics properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, C., Patel, D. Encapsulating an amino acid in a DNA fold. Nat Struct Mol Biol 3, 1046–1050 (1996). https://doi.org/10.1038/nsb1296-1046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1296-1046

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing