Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A kinetic explanation for the rearrangement pathway of BPTI folding

Abstract

Bovine pancreatic trypsin inhibitor (BPTI) does not fold by simple sequential formation of its native disulphide bonds. Instead, an initially formed intermediate, termed N', first rearranges to a more stable species in a slow process that requires substantial unfolding. We find that direct oxidation of N' is also inhibited by native structure which slows both the intermolecular step in oxidation—formation of a mixed disulphide bond with the oxidizing agent GSSG—as well as the subsequent intramolecular step. Folding does not occur appreciably by direct oxidation because the high GSSG concentrations required for efficient mixed disulphide formation cause N' to accumulate as a nonproductive, double-mixed disulphide species. The need to unfold previously acquired native structure, observed in the folding of BPTI, may be a common feature of disulphide-linked folding reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goldenberg, D.P. Native and non-native intermediates in the BPTI folding pathway. Trends Biochem. Sci. 17, 257–261 (1992).

    Article  CAS  Google Scholar 

  2. Creighton, T.E. Conformational restrictions on the pathway of folding and unfolding of the pancreatic trypsin inhibitor. J. molec. Biol. 113, 275–293 (1977).

    Article  CAS  Google Scholar 

  3. Creighton, T.E. & Goldenberg, D.P. Kinetic role of a meta-stable native-like two-disulphide species in the folding transition of bovine pancreatic trypsin inhibitor. J. molec. Biol. 179, 497–526 (1984).

    Article  CAS  Google Scholar 

  4. Weissman, J.S. & Kim, P.S. Reexamination of the folding of BPTI: predominance of native intermediates. Science 253, 1386–1393 (1991).

    Article  CAS  Google Scholar 

  5. Weissman, J.S. & Kim, P.S. Kinetic role of nonnative species in the folding of bovine pancreatic trypsin inhibitor. Proc. natn. Acad. Sci. U.S.A. 89, 9900–9904 (1992).

    Article  CAS  Google Scholar 

  6. Dadlez, M. & Kim, P.S. Detection of a third native one-disulfide intermediate in the folding of BPTI. Nature struct. Biol., 2, 674–679 (1995).

    Article  CAS  Google Scholar 

  7. Weissman, J.S. & Kim, P.S. The pro region of BPTI facilitates folding. Cell 71, 841–851 (1992).

    Article  CAS  Google Scholar 

  8. Weissman, J.S. & Kim, P.S. Efficient catalysis of disulfide bond rearrangements by protein disulfide isomerase. Nature 365, 185–188 (1993).

    Article  CAS  Google Scholar 

  9. Creighton, T.E., Bagley, C.J., Cooper, L., Darby, N.J., Freedman, R.B., Kemmink, J. & Sheikh, A. On the biosynthesis of bovine pancreatic trypsin inhibitor (BPTI). J. molec. Biol. 232, 1176–1196 (1993).

    Article  CAS  Google Scholar 

  10. Moses, E. & Hinz, H.-J. Basic pancreatic trypsin inhibitor has unusual thermodynamic stability parameters. J. molec. Biol. 170, 765–776 (1983).

    Article  CAS  Google Scholar 

  11. Makhatadze, G.I., Kim, K.-S., Woodward, C. & Privalov, P.L. Thermodynamics of BPTI folding. Prot. Sci. 2, 2028–2036 (1993).

    Article  CAS  Google Scholar 

  12. States, D.J., Dobson, C.M., Karplus, M. & Creighton, T.E. A new two-disulphide intermediate in the refolding of reduced bovine pancreatic trypsin inhibitor. J. molec. Biol. 174, 411–418 (1984).

    Article  CAS  Google Scholar 

  13. Eigenbrot, C., Randal, M. & Kossiakoff, A.A. Structural effects induced by removal of a disulfide-bridge: the X-ray structure of the C30A/C51A mutant of basic pancreatic trypsin inhibitor. Prot. Engng. 3, 591–598 (1990).

    Article  CAS  Google Scholar 

  14. van Mierlo, C.P., Darby, N.J., Neuhaus, D. & Creighton, T.E. (14–38, 30–51) double-disulphide intermediate in folding of bovine pancreatic trypsin inhibitor: a two-dimensional 1H nuclear magnetic resonance study. J. molec. Biol. 222, 353–371 (1991).

    Article  CAS  Google Scholar 

  15. Schulman, B.A. & Kim, P.S. Hydrogen exchange in BPTI variants that do not share a common disulfide bond. Prot. Sci. 3, 2226–2232 (1994).

    Article  CAS  Google Scholar 

  16. Darby, N.J., Morin, P.E., Talbo, G. & Creighton, T.E. Refolding of bovine pancreatic trypsin inhibitor via non-native disulphide intermediates. J. molec. Biol. 249, 463–477 (1995).

    Article  CAS  Google Scholar 

  17. Stassinopoulou, C.I., Wagner, G. & Wüthrich, K. Two-dimensional 1H NMR of two chemically modified analogs of the basic pancreatic trypsin inhibitor. Eur. J. Biochem. 145, 423–430 (1984).

    Article  CAS  Google Scholar 

  18. Mendoza, J.A., Jarstfer, M.B. & Goldenberg, D.P. Effects of amino acid replacements on the reductive unfolding kinetics of pancreatic trypsin inhibitor. Biochemistry 33, 1143–1148 (1994).

    Article  CAS  Google Scholar 

  19. Altman, J.D., Henner, D., Nilsson, B., Anderson, S. & Kuntz, I.D. Intracellular expression of BPTI fusion proteins and single column cleavage/affinity purification by chymotrypsin. Prot. Engng. 4, 593–600 (1991).

    Article  CAS  Google Scholar 

  20. Hvidt, A. & Nielson, S.O. Hydrogen exchange in proteins. Adv. Prot. Chem. 21, 287–386 (1966).

    CAS  Google Scholar 

  21. Lee, B. & Richards, F.M. The interpretation of protein structures: estimation of static accessibility. J. molec. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  22. Deisenhofer, J. & Steigemann, W. Crystallographic refinement of the structure of bovine pancreatic trypsin inhibitor at 1.5Å resolution. Acta Crystallogr. B31, 238–250 (1975).

    Article  CAS  Google Scholar 

  23. Wlodawer, A., Nachman, J., Gilliland, G.L., Gallagher, W. & Woodward, C. Structure of form III crystals of bovine pancreatic trypsin inhibitor. J. molec. Biol. 198, 469–480 (1987).

    Article  CAS  Google Scholar 

  24. Kikuchi, H., Goto, Y. & Hamaguchi, K. Reduction of the buried intrachain disulphide bond of the constant fragment of the immunoglobulin light chain: global unfolding under physiological conditions. Biochemistry 25, 2009–2013 (1986).

    Article  CAS  Google Scholar 

  25. Oas, T.G. & Kim, P.S. A peptide model of a protein folding intermediate. Nature 336, 42–48 (1988).

    Article  CAS  Google Scholar 

  26. van Mierlo, C.P., Darby, N.J. & Creighton, T.E. The partially folded conformation of the [30–51] intermediate in the disulfide folding pathway of bovine pancreatic trypsin inhibitor. Proc. natn. Acad. Sci. U.S.A. 89, 6775–6779 (1992).

    Article  CAS  Google Scholar 

  27. Staley, J.P. & Kim, P.S. Formation of a native-like subdomain in a partially folded intermediate of bovine pancreatic trypsin inhibitor. Prot. Sci. 3, 1822–1832 (1994).

    Article  CAS  Google Scholar 

  28. Page, M.I. & Jencks, W.P. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and chelate effect. Proc. natn. Acad. Sci. U.S.A. 68, 1678–1683 (1971).

    Article  CAS  Google Scholar 

  29. Creighton, T.E. An empirical approach to protein conformation stability and flexibility. Biopolymers 22, 49–58 (1983).

    Article  CAS  Google Scholar 

  30. Lin, T.-Y. & Kim, P.S. Urea dependence of thiol-disulfide equilibria in thioredoxin: confirmation of the linkage relationship and a sensitive assay for structure. Biochemistry 28, 5282–5287 (1989).

    Article  CAS  Google Scholar 

  31. Rothwarf, D.M. & Scheraga, H.A. Regeneration of bovine pancreatic ribonuclease A. 4. temperature dependence of the regeneration rate. Biochemistry 32, 2698–2703 (1993).

    Article  CAS  Google Scholar 

  32. Marks, C.B., Naderi, H., Kosen, P.A., Kuntz, I.D. & Anderson, S. Mutants of bovine pancreatic trypsin inhibitor lacking cysteines 14 and 38 can fold properly. Science 235, 1370–1373 (1987).

    Article  CAS  Google Scholar 

  33. Pace, N.C., Grimsley, G.R., Thomson, J.A. & Barnett, B.J. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds. J. biol. Chem. 263, 11820–11825 (1988).

    CAS  PubMed  Google Scholar 

  34. Goto, Y. & Hamaguchi, K. The role of the intrachain disulphide bond in the conformation and stability of the constant fragment of the immunoglobulin light chain. J. Biochem. 86, 1433–1441 (1979).

    Article  CAS  Google Scholar 

  35. Mucke, M. & Schmid, F.X. Intact disulfide bonds decelerate the folding of ribonuclease T1. J. molec. Biol. 239, 713–725 (1994).

    Article  CAS  Google Scholar 

  36. Srinivasan, N., Sowdhamini, R., Ramakrishnan, C. & Balaram, P. Conformations of disulfide bridges in proteins. Int. J. Peptide Res. 36, 147–155 (1990).

    Article  CAS  Google Scholar 

  37. Bardwell, J.C., McGovern, K. & Beckwith, J. Identification of a protein required for disulphide bond formation in vivo. Cell 67, 581–590 (1991).

    Article  CAS  Google Scholar 

  38. Wunderlich, M., Otto, A., Seckler, R. & Glockshuber, R. Bacterial protein disulfide isomerase: efficient catalysis of oxidative protein folding at acidic pH. Biochemistry 32, 12251–12260 (1993).

    Article  CAS  Google Scholar 

  39. Zapun, A. & Creighton, T.E. Effects of DsbA on the disulfide folding of bovine pancreatic trypsin inhibitor and α-lactalbumin. Biochemistry 33, 5202–5211 (1994).

    Article  CAS  Google Scholar 

  40. Ellman, G. Tissue Sulfhydryl Groups. Arch. Biochem. Biophys. 82, 70–77 (1959).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissman, J., Kim, P. A kinetic explanation for the rearrangement pathway of BPTI folding. Nat Struct Mol Biol 2, 1123–1130 (1995). https://doi.org/10.1038/nsb1295-1123

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1295-1123

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing