Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the N-terminal SH3 domain of GRB2 complexed with a peptide from the guanine nucleotide releasing factor Sos

Abstract

Src-homology 3 (SH3) domains mediate signal transduction by binding to proline-rich motifs in target proteins. We have determined the high-resolution NMR structure of the complex between the amino-terminal SH3 domain of GRB2 and a ten amino acid peptide derived from the guanine nucleotide releasing factor Sos. The NMR data show that the peptide adopts the conformation of a left-handed polyproline type II helix and interacts with three major sites on the SH3 domain. The orientation of the bound peptide is opposite to that of proline-rich peptides bound to the SH3 domains of AbI, Fyn and p85.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mayer, B.J. & Baltimore, D. Signaling through SH2 and SH3 domains. Trends Cell Biol. 3, 8–13 (1993).

    Article  CAS  Google Scholar 

  2. Pawson, T. & Schlessinger, J. SH2 and SH3 domains. Curr. Biol. 3, 434–442 (1993).

    Article  CAS  Google Scholar 

  3. Kuriyan, J. & Cowburn, D. Structures of SH2 and SH3 domains. Curr. Opin. struct. Biol. 3, 828–837 (1993).

    Article  CAS  Google Scholar 

  4. Cicchetti, P., Mayer, B.J., Thiel, G. & Baltimore, D. Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho. Science 257, 803–806 (1992).

    Article  CAS  Google Scholar 

  5. Bar-sagi, D., Rotin, D., Batzer, A., Mandiyan, V. & Schlessinger, J. SH3 domains direct cellular localization of signaling molecules. Cell 74, 83–91 (1993).

    Article  CAS  Google Scholar 

  6. Musacchio, A., Noble, M., Pauptit, R., Wierenga, R. & Saraste, M. Crystal structure of a Src-homology 3 (SH3) domain. Nature 359, 851–855(1992).

    Article  CAS  Google Scholar 

  7. Yu, H. et al. Solution structure of the SH3 domain of Src and identification of its ligand-binding site. Science 258, 1665–1668 (1992).

    Article  CAS  Google Scholar 

  8. Kohda, D. et al. Solution structure of the SH3 domain of phospholipase C-γ. Cell 72, 953–960 (1993).

    Article  CAS  Google Scholar 

  9. Koyama, S. et al. Structure of the P13K SH3 domain and analysis of the SH3 family. Cell 72, 945–952 (1993).

    Article  CAS  Google Scholar 

  10. Booker, G.W. et al. Solution structure and ligand-binding site of the SH3 domain of the p85α subunit of phosphatidylinositol 3-kinase. Cell 73, 813–822 (1993).

    Article  CAS  Google Scholar 

  11. Noble, M.E.M., Musacchio, A., Saraste, M., Courtneidge, S.A. & Wierenga, R.K. Crystal structure of the SH3 domain in human Fyn; comparison of the three-dimensional structures of SH3 domains in tyrosine kinases and spectrin. EMBO J. 12, 2617–2624 (1993).

    Article  CAS  Google Scholar 

  12. Borchert, T.V., Mathieu, M., Zeelen, J.P., Courtneidge, S.A. & Wierenga, R.K. The crystal structure of human Csk SH3: structural diversity near the RT-Src and n-Src loop. FFBS Letts 341, 79–85 (1994).

    Article  CAS  Google Scholar 

  13. Yang, Y.S. et al. Solution structure of GAP SH3 domain by 1H NMR and spatial arrangement of essential Ras signaling-involved sequence. EMBO J. 13, 1270–1279 (1994).

    Article  CAS  Google Scholar 

  14. Eck, M.J., Atwell, S.K., Shoelson, S.E & Harrison, S.C. Structure of the regulatory domains of the Src-family tyrosine kinase Lck. Nature 368, 764–769(1994).

    Article  CAS  Google Scholar 

  15. Kohda, D. et al. Solution structure and ligand-binding site of the C-terminal SH3 domain of GRB2. Structure in the press (1994).

    Google Scholar 

  16. Yu, H. et al. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76, 933–945 (1994).

    Article  CAS  Google Scholar 

  17. Musacchio, A., Saraste, M. & Wilmanns, M. High-resolution crystal structures of tyrosine kinase SH3 domains complexed with proline-rich peptides. Nature struct. Biol. 1, 546–551 (1994).

    Article  CAS  Google Scholar 

  18. Lowenstein, E.J. et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to Ras signaling. Cell 70, 431–442 (1992).

    Article  CAS  Google Scholar 

  19. Clark, S.G., Stern, M.J. & Horvitz, H.R. C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 356, 340–344 (1992).

    Article  CAS  Google Scholar 

  20. Marshall, C.J. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr. Opin. Gen. Dev. 4, 82–89 (1994).

    Article  CAS  Google Scholar 

  21. Batzer, A.G., Rotin, D., Urena, J.M., Skolnik, E.Y. & Schlessinger, J. Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor. Molec. Cell Biol. 14, 5192–5201 (1994).

    Article  CAS  Google Scholar 

  22. White, M.F. The IRS-1 signaling system. Curr. Opin. Gen. Dev. 4, 47–54 (1994).

    Article  CAS  Google Scholar 

  23. Skolnik, E.Y. et al. Function of protein GRB2 in linking the insulin receptor to ras signaling pathways. Science 260, 1953–1955 (1993).

    Article  CAS  Google Scholar 

  24. Bowtell, D. Fu, P., Simon, M. & Senior, P. Identification of murine homologs of the Drosophila Son of sevenless gene: potential activators of ras. Proc. natn. Acad. Sci. U.S.A. 89, 6511–6515 (1992).

    Article  CAS  Google Scholar 

  25. Brünger, A.T. X-PLOR Version 3.1: A System for X-ray Crystallography and NMR, (Yale University Press, New Haven, CT; 1992).

    Google Scholar 

  26. Sasisekharan, V. Structure of poly-L-proline II. Acta crystallogr. 12, 897–909 (1959).

    Article  CAS  Google Scholar 

  27. Adzhubei, A.A. & Sternberg, M.J.E. Left-handed polyproline II helices commonly occur in globular proteins. J. molec. Biol. 229, 472–493 (1993).

    Article  CAS  Google Scholar 

  28. Lim, W.A. & Richards, F.M. Critical residues in an SH3 domain from Sem-5 suggest a mechanism for proline-rich peptide recognition. Nature struct. Biol. 1, 221–225 (1994).

    Article  CAS  Google Scholar 

  29. Chen, J.K., Lane, W.S., Brauer, A.W., Tanaka, A. & Schreiber, S.L. Biased combinatorial libraries: novel ligands for the SH3 domain of phosphatidylinositol 3-kinase. J. Am. chem. Soc. 115, 12591–12592 (1993).

    Article  CAS  Google Scholar 

  30. Gout, I. et al. The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell 75, 25–36 (1993).

    Article  CAS  Google Scholar 

  31. Studier, F.W. & Moffatt, B.A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. molec. Biol. 189, 113–130 (1986).

    Article  CAS  Google Scholar 

  32. Rance, M. et al. Improved spectral resolution in COSY 1H NMR spectra of proteins via double quantum filtering. Biochem. biophys. Res. Commun. 117, 479–485 (1983).

    Article  CAS  Google Scholar 

  33. Bax, A. & Davis, D.G. MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J. magn. Reson. 65, 355–360 (1985).

    CAS  Google Scholar 

  34. Müller, L. P.E. COSY, a simple alternative to E.COSY. J. magn. Reson. 72, 191–196 (1987).

    Google Scholar 

  35. Macura, S., Huang, Y., Suter, D. & Ernst, R.R. Two-dimensional chemical exchange and cross-relaxation spectroscopy of coupled nuclear spins. J. magn. Reson. 43, 259–281 (1981).

    CAS  Google Scholar 

  36. States, D.J., Haberkorn, R.A. & Ruben, D.J. A two-dimensional nuclear Overhauser experiments with pure absorption phase in four quadrants. J. magn. Reson. 48, 286–292 (1982).

    CAS  Google Scholar 

  37. Bodenhausen, G. & Ruben, D.J. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69, 185–189 (1980).

    Article  CAS  Google Scholar 

  38. Norwood, T.J., Boyd, J., Heritage, J.E., Soffe, N. & Campbell, I.D. Comparison of techniques for 1H-detected heteronuclear 1H-15N spectroscopy. J. magn. Reson. 87, 488–501 (1990).

    CAS  Google Scholar 

  39. Kay, L.E., Keifer, P. & Saarinen, T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. chem. Soc. 114, 10663–10665 (1992).

    Article  CAS  Google Scholar 

  40. Ikura, M. et al. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256, 632–638 (1992).

    Article  CAS  Google Scholar 

  41. Kay, L.E. & Bax, A. New methods for the measurements of NH-CαH coupling constants in 15N-labeled proteins. J. magn. Reson.. 86, 110–126 (1990).

    CAS  Google Scholar 

  42. Wüthrich, K. NMR of Proteins and Nucleic Acids, (John Wiley and Sons, New York, NY; 1986).

    Book  Google Scholar 

  43. Suri, A.K. & Levy, R.M. Estimation of interatomic distances in proteins from NOE spectra at longer mixing times using an empirical two-spin equation. J. magn. Reson. B101, 320–324 (1993).

    Article  Google Scholar 

  44. Hatanaka, H. et al. Tertiary structure of erabutoxin b in aqueous solution as elucidated by two-dimensional nuclear magnetic resonance. J. molec. Biol. 240, 155–166 (1994).

    Article  CAS  Google Scholar 

  45. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structure. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  46. Brooks, B.R. et al. CHARMM:a program for macromolecular energy, minimization, and dynamics calculation. J. comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terasawa, H., Kohda, D., Hatanaka, H. et al. Structure of the N-terminal SH3 domain of GRB2 complexed with a peptide from the guanine nucleotide releasing factor Sos. Nat Struct Mol Biol 1, 891–897 (1994). https://doi.org/10.1038/nsb1294-891

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1294-891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing