Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution structure of the tetrameric minimum transforming domain of p53

An Erratum to this article was published on 01 January 1995

Abstract

We report the solution structure of the minimum transforming domain (residues 303–366) of human p53 (p53tet) determined by multidimensional NMR spectroscopy. This domain contains a number of important functions associated with p53 activity including transformation, oligomerization, nuclear localization and a phosphorylation site for p34/cdc2 kinase. p53tet forms a symmetric dimer of dimers that is significantly different from a recent structure reported for a shorter construct of this domain. Phosphorylation of Ser 315 has only minor structural consequences, as this region of the protein is unstructured. Modelling based on the p53tet structure suggests possible modes of interaction between adjacent domains in full-length p53 as well as modes of interaction with DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Levine, A.J., Momand, C.A & Finlay, C.A. The p53 tumour suppressor gene. Nature 351, 453–456 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C.C. p53 mutations in human cancer. Science 253, 49–53 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Donehower, L.A. & Bradley, A. The tumor suppressor p53. Biochimi. biophys. Acta 1155, 181–205 (1993).

    CAS  Google Scholar 

  4. Zambetti, G.P. & Levine, A.J. A comparision of the biological activities of wild-type and mutant p53. FASEB J. 7, 855–865 (1993).

    CAS  PubMed  Google Scholar 

  5. Mercer, W.E., Amin, M., Sauve, G.J., Appella, E., Ullrich, S.J. & Romano, J. Wild-type human p53 is antiproliferative in SV4O-transformed hamster cells. Oncogene 5, 973–980 (1990).

    CAS  PubMed  Google Scholar 

  6. Mercer, W.E., Shields, M.T., Amin, M., Sauve, G.J., Appella, E. & Ullrich, S.J. Negative growth regulation in a glioblastoma cell line that conditionally expresses human wild-type p53. Proc. natn. Acad. Sci. U.S.A. 87, 6166–6170 (1990).

    CAS  Google Scholar 

  7. Baker, S.J., Markowitz, S., Fearon, E.R., Willson, J.K.V. & Vogelstein, B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249, 912–915.

    CAS  PubMed  Google Scholar 

  8. Chen, P.-L., Chen, Y., Bookstein, R. & Lee, W.-H. Genetic mechanisms of tumor suppression by the human p53 gene. Science 250, 1576–1580 (1990).

    CAS  PubMed  Google Scholar 

  9. Diller, L. et al. p53 functions as a cell cycle control protein in osteosarcomas. Molec. Cell. Biol. 10, 5772–5781 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin, D., Shields, M., Ullrich, S., Appella E. & Mercer, W. Growth arrest induced by wild-type p53 protein blocks cells prior to or near the restriction point in late G1 phase. Proc. natn. Acad. Sci. U.S.A. 89, 9210–9214 (1992).

    CAS  Google Scholar 

  11. Martinez, J., Georgoff, I., Martinez, J. & Levine, A.J. Cellular localization and cell cycle regulation by a temperature-sensitive p53 protein. Genes Develop. 5, 151–159 (1991).

    CAS  PubMed  Google Scholar 

  12. Shaulsky, G., Goldfinger, N., & Rotter, V. Alterations in tumor development in vivo mediated by expression of wild type and mutant p53 proteins. Cancer Res. 51, 5232–5237 (1991).

    CAS  PubMed  Google Scholar 

  13. Wolf, D., Admon, S., Oren, M. & Rotter, V. Abelson murine leukemia virus-transformed cells that lack p53 protein synthesis express aberrant p53 mRNA species. Molec Cell. Biol. 4, 552–558 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kastan, M.B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Ce11 71, 587–597 (1992).

    CAS  Google Scholar 

  15. El-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Ce11 75, 817–825 (1993).

    CAS  Google Scholar 

  16. Harper, J.W., Adam, G.R., Wei, N., Keyomarsi, K. & Elledge, S.J. The p21 cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin dependent kinases. Cell 75, 805–816 (1993).

    CAS  PubMed  Google Scholar 

  17. Xiong, Y., Hannon, G.J., Zhang, H., Casso, D., Kobayashi, R. & Beach, D. p21 is a universal inhibitor of cyclin kinases. Nature 366, 701–704 (1993).

    CAS  PubMed  Google Scholar 

  18. Gu, Y., Turck, C.W. & Morgan, D.O. Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature 366, 707–710 (1993).

    CAS  PubMed  Google Scholar 

  19. Lane, D.P P53, Guardian of the genome. Nature 358, 15–16 (1992).

    CAS  PubMed  Google Scholar 

  20. Milner, J. & Medcalf, E.A. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 65, 765–774 (1991).

    CAS  PubMed  Google Scholar 

  21. Bargonetti, J., Reynisdottir, J., Friedman, P.N. & Prives, C. Site specific binding of wild-type p53 to cellular DNA is inhibited by SV4O T antigen and mutant p53. Genes Develop. 6, 1886–1898 (1992).

    CAS  PubMed  Google Scholar 

  22. Shaulian, E., Zauberman, A., Ginsberg, D. & Oren, M. Identification of a minimal transforming domain of p53: Negative dominance through abrogation of sequence-specific DNA-binding. Molec Cell. Biol. 12, 5581–5592 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Friedman, P.N., Chen, X., Bargonetti, J. & Prives, C. The p53 protein is an unusually shaped tetramer that binds directly to DNA. Proc. natn. Acad. Sci. U.S.A. 90, 3319–3323 (1993).

    CAS  Google Scholar 

  24. Hainaut, P. & Milner, J. Redox modulation of p53 conformation and sequence specific DNA-binding in vitro. Cancer Res. 53, 4469– 4473 (1993).

    CAS  PubMed  Google Scholar 

  25. Cho, Y., Gorina, S., Jeffrey, P. & Pavletich, N. Crystal structure of p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994).

    CAS  PubMed  Google Scholar 

  26. Pavletich, N., Chambers, K.A. & Pabo, C.A. The DNA-binding doman of p53 contains the four conserved regions and the major mutation hot spots. Genes Develop. 7, 2556–2564 (1993).

    CAS  PubMed  Google Scholar 

  27. Halazonetis, T.D. & Kandil, A.N. Conformational shifts propagate from the oligomerization domain of p53 to its tetrameric DNA binding domain and restore DNA binding to select p53 mutants. EMBO J. 12, 5057–5064 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, Y. et al. p53 domains: identification and characterization of two autonomous DNA-binding regions. Genes Develop. 7, 2575– 2578 (1993).

    CAS  PubMed  Google Scholar 

  29. Stürzbecher, H.W. et al. A C-terminal α-helix plus basic region motif is the major structural determinant of p53 tetramerization. Oncogene 7, 1513–1523 (1992).

    PubMed  Google Scholar 

  30. Wang, P. et al. p53 domains: structure, oligomerization, and transformation. Molec. Cell. Biol. 14, 5182–5191 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sakamoto, H., Lewis, M.S., Kodama, H., Appella, E. and Sakaguchi, K. Specific sequences from the carboxyl terminus of human p53 gene product form anti-parallel tetramers in solution. Proc. natn. Acad. Sci. U.S.A. 91, 8974–8978 (1994).

    CAS  Google Scholar 

  32. Stürzbecher, H.W. et al. p53 interactswith p34cdc2 in mammalian cells: implications for cell cycle control and oncogenesis. Oncogene 5, 595–801 (1990).

    Google Scholar 

  33. Hupp, T.R., Meek, D.W., Midgley, C.A & Lane, D.P. Regulation of the specific DNA binding function of p53. Ce11 71, 875–886 (1992).

    CAS  Google Scholar 

  34. El-Deiry, W.S., Kern, S.E., Pietenpol, J.A., Kizler, K.W. & Vogelstein, B. Definition of a consensus binding site for p53. Nature Genet. 1, 45– 49 (1992).

    CAS  PubMed  Google Scholar 

  35. Bodenhausen, G. & Ruben, D.J. Natural abundance nitrogen-15 NMR by enhanced heteronuclearspectroscopy. Chem. Phys. Lett. 69, 185–189 (1980).

    CAS  Google Scholar 

  36. Bax, A. & Davis, D.G. MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J. magn. Reson. 65, 355 (1985).

    CAS  Google Scholar 

  37. Folkers, P.J.M, Folmer, R.H.A, Konigs, R.N.H, & Hilbers, C.W. Overcoming the ambiguity problem encountered in the analysis of nuclear Overhauser magnetic resonance spectra of symmetric dimmer proteins. J. Am. chem. Soc. 115, 3798–3799 (1993).

    CAS  Google Scholar 

  38. Ikura, M ; Clore, G.M. ; Gronenborn, A.M. ; Zhu, G. ; Klee, C.B & Bax, A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256, 632–638 (1992).

    CAS  PubMed  Google Scholar 

  39. Lee, W., Revington, M.J., Arrowsmith, C.H. & Kay, L.E. A pulsed field gradient isotope-filtered 3D 13C HMQC-NOESY experiment for extracting intermolecular NOE contacts in molecular complexes. FEBS Letts. 350, 87–90 (1994).

    CAS  Google Scholar 

  40. Brunger, A.T. X-PLOR version 3.1: A system for X-Ray crystallography and NMR (Yale University Press, New Haven; 1993).

    Google Scholar 

  41. Harris, N.L., Presnell, S.R., & Cohen, F.R. Four helix bundle diversity in globular proteins. J. molec. Biol. 236, 1356–1368 (1994).

    CAS  PubMed  Google Scholar 

  42. Eisenberg, D. & McLachlan, A.D. Solvation energy in protein folding and binding. Nature, 319, 199–203 (1986).

    CAS  PubMed  Google Scholar 

  43. Chiche, L., Gregoret, L.M., Cohen, F.E., & Kollman, P.A. Protein model structure evaluation using the solvation free energy of folding. Proc. natn. Acad. Sci. U.S.A. 87, 3240–3243 (1990).

    CAS  Google Scholar 

  44. Schultz, G.E. & Schirmer, R.H. Principles of protein structure, (Springer-Verlag, New York, 1979).

    Google Scholar 

  45. O'Shea, E.K., Klemm, J.D., Kim, P.S. & Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled-coil. Science 254, 539–543 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Clore, G.M. et al. High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science 265, 386–391 (1994).

    CAS  PubMed  Google Scholar 

  47. Foord, O.S., Bhattacharya, P., Reich, Z. & Rotter, V. The DNA-binding domain is contained in the C-terminus of wild-type p53 protein. Nucleic Acids Res. 19, 5191–5198 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Singerland, J.M., Jenkins, J.R. & Benchimol, S. The transforming and suppressor functions of p53 alleles: effects of mutations that disrupt phosphorylation, oligomerization and nuclear translocation. EMBO. J 12, 1029–1037 (1993).

    Google Scholar 

  49. Kern, S., Kinszler, K., Bruskin, A., Jarosz, D., Friedman, P., Prives, C. and Vogelstein, B. Identification of p53 as a sequence-specific DNA-binding protein. Science 252, 1708–1711. (1991).

    CAS  PubMed  Google Scholar 

  50. Funk, W.D., Pak, D.T., Karas, R.H., Wright, W.E. & Shay, J.W. A transcriptionally active DNA-bindingsite for human p53 protein complexes. Molec Cell. Biol. 12, 2866–2871 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Halazonetis, T.D., Davis, L.J. & Kandil, A.N. Wild-type p53 adopts a ‘mutant-like’ conformation when bound to DNA. EMBO J. 12, 1021–1028 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Milner, J. & Medcalf, E.A. Temperature-dependent swithching between ‘wild-type’ and ‘mutant’ forms of p53-Va1 135. J. molec. Biol. 216, 481–484 (1990).

    CAS  PubMed  Google Scholar 

  53. Ulrich, S.J., Mercer, W.E. & Appella, E. Human wild-type p53 adopts a unique conformational and phosphorylation state in vivo during growth arrest of glioblastoma cells. Oncogene 7, 1635–1643 (1992).

    Google Scholar 

  54. Meek, D.W., Simon, S., Kikkawa, U. & Eckart, W. The p53 tumour suppressor protein is phosphorylated at Serine 389 by casein kinase II. EMBO J. 9, 3253–3260 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Studier, F.W., Rosenberg, A.H., Dunn, J.J. & Dubendorff, J.W. Use of T7 RNA polymerase to direct expression of cloned genes. Meths. Enzymol. 185, 60–89 (1990).

    CAS  Google Scholar 

  56. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning, 2nd Ed. (Cold Spring Harbor Press, Cold Spring Harbor; 1989).

    Google Scholar 

  57. Chan, A.K., Litchfield, D.W. & Wright, J.A. . Phosphorylation of ribonucleotide reductase R2 protein: in vivo and in vitro evidence of a role for p34cdc2 and CDK2 protein kinases. Biochemistry 32: 12835–12840 (1993).

    CAS  PubMed  Google Scholar 

  58. Kay, L.E., Keifer, P. & Saarinen, T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. chem. Soc. 114, 10663–10665 (1992).

    CAS  Google Scholar 

  59. Kay, L.E., Ikura, M., Tschudin, R. & Bax, A. Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J. magn. Reson. 89. 496–514 (1990).

    CAS  Google Scholar 

  60. Wittekind, M. & Mueller, L. HNCACB: A high sensitivity 3D NMR experiment to correlate amide proton and nitrogen resonances with the alpha and beta carbon resonances in proteins. J. magn. Reson. 101 201–205 (1993).

    CAS  Google Scholar 

  61. Grzesiek, S. & Bax, A. Correlating backbone amide and sidechain resonances in larger proteins by multiple relayed triple resonance NMR. J. Am. chem. Soc. 114, 6291–6293 (1992).

    CAS  Google Scholar 

  62. Kay, L.E. J. Am. chem. Soc. 115, 2055–2057 (1993).

    CAS  Google Scholar 

  63. McCoy, M. and Mueller, L.J. Selective shaped pulse decoupling in NMR: homonuclear [carbon-C13]carbonyl decoupling. J. Am. chem. Soc. 114, 2108–2112 (1992).

    CAS  Google Scholar 

  64. Shaka, A.J., Barker, P.B. & Freeman, R.J. Computer-optimized decoupling scheme for wideband applications and low level operation. J. magn. Reson. 64, 547 (1985).

    CAS  Google Scholar 

  65. Clore, G.M. & Gronenborn, A.M. Structures of larger proteins, protein-ligand and protein-DNA complexes by multidimensional heteronuclear NMR spectroscopy. Prot. Sci. 3, 372–390 (1994).

    CAS  Google Scholar 

  66. Bagby, S., Harvey, T.S., Kay, L.E., Eagle, S.G., Inouye, S. & Ikura, M. NMR-derived three-dimensional structure of protein S complexed with calcium. Structure 2, 107–122 (1994).

    CAS  PubMed  Google Scholar 

  67. Bax, A., Clore, G.M. and Gronenborn, A.M. (1990) 1H-1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C -enriched proteins. J. magn. Reson. 88, 425–431. (1990).

    CAS  Google Scholar 

  68. Marion, D. et al. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-Multiple quantum coherence and Nuclear Overhauser-Multiple quantum coherence spectroscopy: Application to Interleukin lb. Biochemistry. 28, 6150–6156 (1989).

    CAS  PubMed  Google Scholar 

  69. Shaka, A.J., Lee, F.D. & Pines, A. Iterative schemes for bilinear operators: application to spin decoupling. J. magn. Reson. 77, 274–293 (1988).

    Google Scholar 

  70. Zuiderweg, E.R.P. & Fesik, S.W. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry, 28, 2387–2391 (1989).

    CAS  PubMed  Google Scholar 

  71. Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A., & Bax, A. Three-dimensional heteronuclear NMR of 15N-labeled proteins. J. Am. chem. Soc. 111, 1515–1517 (1989).

    CAS  Google Scholar 

  72. Pascal, S.M., Muhandiram, D.R., Yamazaki, T., Forman-Kay, J.D. & Kay, L.E. Simultaneous acquisition of 15N- and 13C-edited NOE spectra of proteins dissolved in H2O J. magn. Reson. B103, 197–201 (1994).

    Google Scholar 

  73. Ikura, M., Kay, L.E. & Bax, A. A novel approach for sequential assignment of 1H, 13C and 15N spectra of larger proteins: Heteronuclear triple resonance 3D NMR spectroscopy. Biochemistry 29, 4659–4667 (1990).

    CAS  PubMed  Google Scholar 

  74. Muhandiram, D.R., Farrow, N., Xu, G.Y., Smallcombe, S.J. & Kay, L.E. A gradient 13C NOESY-HSQC experiment for recording NOESY spectra of 13C labelled proteins dissolved in H2O. J. magn. Reson. B102, 317–321 (1993).

    Google Scholar 

  75. Kay, L.E. & Bax, A. A new method for the measurement of NH- CαH coupling constants in 15N-labelled proteins. J. magn. Reson. 86, 110–126 (1990).

    CAS  Google Scholar 

  76. Shaka, A.J., Keeler, J., Frenkiel, T. & Freeman, R.J. An improved sequence for broadband decoupling: Waltz-16, J. magn. Reson. 52, 35–338 (1983).

    Google Scholar 

  77. Delaglio, F. NMRPipe System of Software (National Institutes of Health, Bethesda; 1993).

    Google Scholar 

  78. Garrett, D.S., Powers, R., Gronenborn, A.M. & Clore, G.M. A common sense approach to peak picking in two-, three-, and four- dimensional spectra using automatic computer analysis of contour diagrams. J. magn. Reson. 95, 214–220 (1991).

    CAS  Google Scholar 

  79. Nilges, M. A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins Struct. Funct. Genet. 17, 295–309 (1993).

    Google Scholar 

  80. Wuthrich, K., Billeter, M. & Braun, W. Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J. molec. Biol. 169, 949–961 (1983).

    CAS  PubMed  Google Scholar 

  81. Redfield, C. & Dobson, C.M. 1H NMR studies of human lysozyme: spectral assignment and comparison with hen lysozyme. Biochemistry 29, 7201–7214 (1990).

    CAS  PubMed  Google Scholar 

  82. Wishart, D.S., Sykes, B.D., & Richards, F.M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31, 1647–1651 (1992).

    CAS  PubMed  Google Scholar 

  83. Kraulis, P.J. Molscript: a program to produce both detailed and schematic plots for protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Google Scholar 

  84. Evans, S.V. SETOR: hardware-lighted three dimensional solid model representation of macromolecules (1993).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, W., Harvey, T., Yin, Y. et al. Solution structure of the tetrameric minimum transforming domain of p53. Nat Struct Mol Biol 1, 877–890 (1994). https://doi.org/10.1038/nsb1294-877

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1294-877

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing