Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution structure of the ets domain of Fli-1 when bound to DNA

Abstract

Members of the ets family of transcription factors share a conserved DNA-binding domain, the ets domain. By using multidimensional NMR, we have determined the structure of the ets domain of human Fli-1 in the DNA-bound form. It consists of three α-helices and a four-stranded β-sheet, similar to structures of the class of helix-turn-helix DNA binding proteins first found in the catabolite activator protein of Escherichia coli. NMR and mutagenesis experiments suggest that in comparison to structurally related proteins, the ets domain uses a new variation of the helix-turn-helix motif for binding to DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Karim, F.D. et al. The ETS-domain: a new DNA-binding motif that recognizes a purine-rich core DNA sequence. Genes Develop. 4, 1451–1453 (1990).

    Article  CAS  Google Scholar 

  2. Wasylyk, B., Hahn, S.L. & Giovane, A. The Ets family of transcription factors. Eur. J. Biochem. 211, 7–18 (1993).

    Article  CAS  Google Scholar 

  3. Scott, E.W., Simon, M.C., Anastasi, H. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994).

    Article  CAS  Google Scholar 

  4. Schulz, R.A., The, S.M., Hogue, D.A., Galewsky, S. & Guo, Q. Ets oncogene-related gene Elg functions in Drosophila oogenesis. Proc. natn. Acad. Sci. U.S.A. 90, 10076–10080 (1993).

    Article  CAS  Google Scholar 

  5. Burtis, K.C., Thummel, C.S., Jones, C.W., Karim, F.D. & Hogness, D.S. The Drosophila 74EF early puff contains E74, a complex ecdysone inducible gene that encodes two ets-related proteins. Cell 70, 85–99 (1992).

    Google Scholar 

  6. Lai, Z.-C. & Rubin, G.M. Negative control of photoreceptor develpment in Drosophila by the product of the yan gene, an ETS domain protein. Cell 70, 609–620 (1992).

    Article  CAS  Google Scholar 

  7. Klaes, A., Menne, T.S., A., Scholz, H. & Klämbt, C. The ets transcription factors encoded by Drosophila gene pointed direct glial cell differentiation in the embryonic CNS. Cell 78, 149–160 (1994).

    Article  CAS  Google Scholar 

  8. O'Neil, E.M., Rebay, I., Tijan, R. & Rubin, G.M. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the ras/MAPK pathway. Cell 78, 137–147 (1994).

    Article  Google Scholar 

  9. Brunner, D. et al. The ETS domain protein Pointed-P2 is a target of MAP kinase in the Sevenless signal transduction pathway. Nature 370, 386–389 (1994).

    Article  CAS  Google Scholar 

  10. Leiden, J.M. & Thompson, C.B. Transcriptional regulation of T-cell genes during T-ceIl development. Curr. Opin. Immunol. 6, 231–237 (1994).

    Article  CAS  Google Scholar 

  11. Leprince, D. et al. A putative second cell-derived oncogene of the avian leukemia retrovirus E26. Nature 306, 395–397 (1983).

    Article  CAS  Google Scholar 

  12. Nunn, M.F., Seeberg, P.M., Moscovici, C. & Duesberg, P.H. Tripartite structure of the avian erythroblastosis virus E26 transforming gene. Nature 306, 391–395 (1983).

    Article  CAS  Google Scholar 

  13. Moreau-Gachelin, F., Tavitian, A. & Tambourin, P. Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature 331, 277–280 (1988).

    Article  CAS  Google Scholar 

  14. Ben-David, Y., Giddens, E.B., Letwin, K. & Bernstein, A. Erythroleukemia induction by Friend murine leukemia virus: insertional activation of a new member of the ets gene family, Fli-1, closely linked to c-ets-1. Genes Develop. 5, 908–918 (1991).

    Article  CAS  Google Scholar 

  15. Delattre, O. et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359, 162–165 (1992).

    Article  CAS  Google Scholar 

  16. Zucman, J. et al. Combinatorial generation of variable fusion proteins in the Ewing family of tumours. EMBO J. 12, 4481–4487 (1993).

    Article  CAS  Google Scholar 

  17. May, W.A. et al. Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FL1 for transformation. Proc. natn. Acad. sci. U.S.A. 90, 5752–5756 (1993).

    Article  CAS  Google Scholar 

  18. Shimizu, K. et al. An ets-related gene, ERG, is rearranged in human myeloid leukemia with t(1 6;21) chromosomal translocation. Proc. natn. Acad. Sci. U.S.A. 90, 10280–10284 (1993).

    Article  CAS  Google Scholar 

  19. Sorensen, P.H.B. et al. A second Ewing's sarcoma translocation, t(21;22), fuses EWS gene to another ETS-family transcription factor, ERG. Nature Genet.. 6, 146–151 (1994).

    Article  CAS  Google Scholar 

  20. Nye, J.A., Petersen, J.M., Gunther, C.V., Jonsen, M.D. & Graves, B.J. Interaction of murine Ets-1 with GGA-binding sites establishes the ETS domain as a new DNA-binding motif. Genes Develop. 6, 975–990 (1992).

    Article  CAS  Google Scholar 

  21. Mao, X., Miesfeldt, S., Yang, H., Leiden, J.M. & Thompson, C.B. The Fli-1 and chemimeric EWS-Fli-1 oncoproteins display similar DNA binding specifities. J. biol. Chem. 269, 18216–18222 (1994).

    CAS  PubMed  Google Scholar 

  22. Wang, C.-Y., Petryniak, B., Ho, I.-C., Thompson, C.B. & Leiden, J.M. Evolutionarily conserved ets family members display distinct DNA binding specifities. J. exp. Med. 75, 1391–1399 (1992).

    Article  Google Scholar 

  23. Ogata, K. et al. Solution structure of a DNA-binding unit of Myb: a helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core. Proc. natn. Acad. Sci. U.S.A. 89, 6428–6432 (1992).

    Article  CAS  Google Scholar 

  24. Laget, M.-P., Callebaut, I., de Launoit, Y., Stehelin, D. & Mornon, J.-P. Predicted common structural features of DNA-binding domains from Ets, Myb and HMG transcription factors. Nucleic Acids Res. 21, 5987–5996 (1993).

    Article  CAS  Google Scholar 

  25. Pabo, C.O. & Sauer, R.T. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61, 1053–1095 (1992).

    Article  CAS  Google Scholar 

  26. Schultz, S.C., Shields, G.C. & Steitz, T.A. Crystal structure and CAP-DNA Complex: the DNA is bent by 90°. Science 253, 1001–1007 (1991).

    Article  CAS  Google Scholar 

  27. Wilson, K.P., Shewchuk, L.M., Brennan, R.G., Otsuka, A.J. & Matthews, B.W. The E. coli biotin holoenzyme synthetase/bio repressor crystal structure delineates the biotin and DNA-binding domains. Proc.natn. Acad. Sci. U.S.A. 89, 9257–9261 (1992).

    Article  CAS  Google Scholar 

  28. Ramakrishnan, V., Finch, J.T., Graziano, V., Lee, P.L. & Sweet, R.M. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362, 219–223 (1993).

    Article  CAS  Google Scholar 

  29. Clark, K.L., Halay, E.D., Lai, E. & Burley, S.K. Cocrystal structure of the HNF-3/forkhead DNA-recognition motif resembles histone H5. Nature 364, 412–420 (1993).

    Article  CAS  Google Scholar 

  30. Harrison, C.J., Bohm, A.A. & Nelson, H.C.M. Crystal structure of DNA binding domain of the heat shock transcription factor. Science 263, 224–227 (1994).

    Article  CAS  Google Scholar 

  31. Brändén, C. & Tooze, J. lntroduction to Protein Structure (Garland, NewYork and London; 1991).

    Google Scholar 

  32. Mavrothalassitis, G., Fisher, R.J., Smyth, F., Watson, D.K. & Papas, T.S. Structural inferences of the ETS1 DNA-binding domain determined by mutational analysis. Oncogene 9, 425–435 (1994).

    CAS  PubMed  Google Scholar 

  33. Assa-Munt, N., Mortishire-Smith, R.J., Aurora, R., Herr, W. & Wright, P.E. The solution structure of the Oct-1 POU-specific domain reveals a striking similarity to the bacteriophage λ repressor DNA-binding domain. Cel1 73, 193–205 (1993).

    Article  CAS  Google Scholar 

  34. Dekker, N. et al. Solution structure of the POU-specific DNA-binding domain of Oct-1. Nature 362, 852–855 (1993).

    Article  CAS  Google Scholar 

  35. Klemm, J.D., Rould, M.A., Aurora, R., Herr, W. & Pabo, C.O. Crystal structure of Oct-1 POU domain bound to a octamer site: DNA recognition with tethered DNA-binding modules. Cell 77, 21–32 (1994).

    Article  CAS  Google Scholar 

  36. Fesik S.W. et al. NMR studies of [U-13C] cyclosporin A bound to cyclophilin: bound conformation and portions of cyclosporin involved in binding. Biochemistry 30, 6574–6583 (1991).

    Article  CAS  Google Scholar 

  37. Liang, H. et al. The secondary structure of the ets domain of human Fli-1 resembles that of the helix-turn-helix DNA-Binding motif of E. coli CAP. Proc. natn. Acad. Sci. U.S.A. in the press (1994).

  38. Bosselut, R., Levin, J., Adjadj, E. & Ghysdael, J. A single amino-acid substitution in the Ets domain alters core DNA binding specifity of Ets1 to that of the related transcription factors Elf1 and E74. Nucleic Acids Res. 21, 5184–5191 (1993).

    Article  CAS  Google Scholar 

  39. Ebright, R.H., Cossart, P., Gicquel-Sanzey, B. & Beckwith, J. Mutations that alter the DNA sequence specifity of the catabolite gene activator protein of E. coli.. Nature 311, 232–235 (1984).

    Article  CAS  Google Scholar 

  40. Brennan, R.G. The winged-helix DNA-binding motif: another helix- turn-helix takeoff. Cell 74, 773–776 (1993).

    Article  CAS  Google Scholar 

  41. Bax, A. & Grzesiek, S. Methodological advances in protein NMR. Accts. chem. Res. 26, 131–37 (1993).

    Article  CAS  Google Scholar 

  42. Brünger, A.T. X-PLOR 3. 1 Manual (Yale Univ. Press, New Haven; 1992).

    Google Scholar 

  43. Wüthrich, K., Billeter, M. & Braun, W. Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J. molec. Biol. 169, 949–961 (1983).

    Article  Google Scholar 

  44. Brooks, B. . et al. CHARMM: A program for macromolecular energy minimization, and molecular dynamics calculations. J. comp. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  45. Carson, M. Ribbon models of macromolecules. J. molec. Graphics 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  46. Lee, B. & Richards, F.M. The interpretation of protein structures:estimation of static accessibility. J. molec. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, H., Mao, X., Olejniczak, E. et al. Solution structure of the ets domain of Fli-1 when bound to DNA. Nat Struct Mol Biol 1, 871–876 (1994). https://doi.org/10.1038/nsb1294-871

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1294-871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing