Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for cleft closure in actomyosin upon ADP release

Abstract

Structural insights into the interaction of smooth muscle myosin with actin have been provided by computer-based fitting of crystal structures into three-dimensional reconstructions obtained by electron cryomicroscopy, and by mapping of structural and dynamic changes in the actomyosin complex. The actomyosin structures determined in the presence and absence of MgADP differ significantly from each other, and from all crystallographic structures of unbound myosin. Coupled to a complex movement (34 Å) of the light chain binding domain upon MgADP release, we observed a 9° rotation of the myosin motor domain relative to the actin filament, and a closure of the cleft that divides the actin binding region of the myosin head. Cleft closure is achieved by a movement of the upper 50 kDa region, while parts of the lower 50 kDa region are stabilized through strong interactions with actin. This model supports a mechanism in which binding of MgATP at the active site opens the cleft and disrupts the interface, thereby releasing myosin from actin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo views of the final smooth muscle myosin models and the corresponding 3D reconstructions of actomyosin a, in the presence of MgADP and b, in the absence of nucleotide.
Figure 2: Best fits for crystal structures to the 3D rigor reconstructions.
Figure 3: Depiction of the light chain domain movement.
Figure 4: Differences between the final models and the corresponding reconstructions (discrepancy maps).
Figure 5: Depiction of conformational changes and structural flexibility in the MgADP state and the rigor state.

Similar content being viewed by others

References

  1. Geeves, M.A. The dynamics of actin and myosin association and the crossbridge model of muscle contraction. Biochem. J. 274, 1–14 (1991).

    Article  CAS  Google Scholar 

  2. Block, S.M. Fifty ways to love your lever: myosin motors. Cell 87, 151–157 (1996).

    Article  CAS  Google Scholar 

  3. Goldman, Y.E. Wag the tail: structural dynamics of actomyosin. Cell 93, 1–4 (1998).

    Article  CAS  Google Scholar 

  4. Dominguez, R., Freyzon, Y., Trybus, K.M. & Cohen, C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–571 (1998).

    Article  CAS  Google Scholar 

  5. Fisher, A.J. et al. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4 . Biochemistry 34, 8960–8972 (1995).

    Article  CAS  Google Scholar 

  6. Gulick, A.M., Bauer, C.B., Thoden, J.B. & Rayment, I. X-ray structures of the MgADP, MgATPγS, and MgAMPPNP complexes of the Dictyostelium discoideum myosin motor domain. Biochemistry 36, 11619–11628 (1997).

    Article  CAS  Google Scholar 

  7. Rayment, I. et al. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–58 (1993).

    Article  CAS  Google Scholar 

  8. Smith, C.A. & Rayment, I. X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 Å resolution. Biochemistry 35, 5404–5417 (1996).

    Article  CAS  Google Scholar 

  9. Lorenz, M., Popp, D. & Holmes, K.C. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J. Mol. Biol. 234, 826–836 (1993).

    Article  CAS  Google Scholar 

  10. Rayment, I. et al. Structure of the actin-myosin complex and its implications for muscle contraction. Science 261, 58–65 (1993).

    Article  CAS  Google Scholar 

  11. Schröder, R.R. et al. Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature 364, 171–174 (1993).

    Article  Google Scholar 

  12. Whittaker, M. et al. A 35-Å movement of smooth muscle myosin on ADP release. Nature 378, 748–751 (1995).

    Article  CAS  Google Scholar 

  13. Hanein, D., Matsudaira, P. & DeRosier, D.J. Evidence for a conformational change in actin induced by fimbrin (N375) binding. J. Cell Biol. 139, 387–396 (1997).

    Article  CAS  Google Scholar 

  14. Hanein, D. & DeRosier, D.J. A new algorithm to align 3-D maps of helical structures. Ultramicroscopy 76, 233–238 (1999).

    Article  CAS  Google Scholar 

  15. Rost, L.E., Hanein, D. & DeRosier, D.J. Reconstruction of symmetry deviations: a procedure to analyze partially decorated F-actin and other incomplete structures. Ultramicroscopy 72, 187–197 (1998).

    Article  CAS  Google Scholar 

  16. Volkmann, N. & Hanein, D. Quantitative fitting of atomic models into observed densities derived by electron microscopy. J. Struct. Biol. 125, 176–184 (1999).

    Article  CAS  Google Scholar 

  17. Houdusse, A., Kalabokis, V.N., Himmel, D., Szent-Györgyi, A.G. & Cohen, C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 97, 459–470 (1999).

    Article  CAS  Google Scholar 

  18. Cremo, C.R. & Geeves, M.A. Interaction of actin and ADP with the head domain of smooth muscle myosin: implications for strain-dependent ADP release in smooth muscle. Biochemistry 37, 1969–1978 (1998).

    Article  CAS  Google Scholar 

  19. Baker, T.S. & Johnson, J.E. Low resolution meets high: towards a resolution continuum from cells to atoms. Curr. Opin. Struct. Biol. 6, 585–594 (1996).

    Article  CAS  Google Scholar 

  20. Corrie, J.E.T. et al. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature 400, 425–430 (1999).

    Article  CAS  Google Scholar 

  21. Lauzon, A.M. et al. A 7-amino-acid loop alters the kinetics of smooth muscle myosin in the laser trap. J. Muscle Res. 19, 825–837 (1998).

    Article  CAS  Google Scholar 

  22. Sweeney, H.L. et al. Kinetic tuning of myosin via a flexible loop adjacent to the nucleotide binding pocket. J. Biol. Chem. 273, 6262–6270 (1998).

    Article  CAS  Google Scholar 

  23. Kurzawa-Goertz, S.E., Perreault-Micale, C.L., Trybus, K.M., Szent-Györgyi, A.G. & Geeves, M.A. Loop I can modulate ADP affinity, ATPase activity, and motility of different scallop myosins. Transient kinetic analysis of S1 isoforms. Biochemistry 37, 7517–7525 (1998).

    Article  CAS  Google Scholar 

  24. Applegate, D. & Reisler, E. Protease-sensitive regions in myosin subfragment 1. Proc. Natl. Acad. Sci. USA 80, 7109–7112 (1983).

    Article  CAS  Google Scholar 

  25. Mehta, A.D., Finer, J.T. & Spudich, J.A. Detection of single-molecule interactions using correlated thermal diffusion. Proc. Natl. Acad. Sci. USA 94, 7927–7931 (1997).

    Article  CAS  Google Scholar 

  26. Molloy, J.E., Burns, J.E., Kendrick-Jones, J., Tregear, R.T. & White, D.C. Movement and force produced by a single myosin head. Nature 378, 209–212 (1995).

    Article  CAS  Google Scholar 

  27. Tyska, M.J. et al. Two heads of myosin are better than one for generating force and motion. Proc. Natl. Acad. Sci. USA 96, 4402–4407 (1999).

    Article  CAS  Google Scholar 

  28. Gollub, J., Cremo, C.R. & Cooke, R. ADP release produces a rotation of the neck region of smooth myosin but not skeletal myosin. Nature Struct. Biol. 3, 796–802 (1996).

    Article  CAS  Google Scholar 

  29. Dantzig, J.A., Barsotti, R.J., Manz, S., Sweeney, H.L. & Goldman, Y.E. The ADP release step of the smooth muscle cross-bridge cycle is not directly associated with force generation. Biophys. J. 77, 386–397 (1999).

    Article  CAS  Google Scholar 

  30. Milligan, R.A. Protein-protein interactions in the rigor actomyosin complex. Proc. Natl. Acad. Sci. USA 93, 21–26 (1996).

    Article  CAS  Google Scholar 

  31. Volkmann, N. & Hanein, D. Actomyosin: law and order in motility. Curr. Opin. Cell Biol. 12, 26–34 (2000).

    Article  CAS  Google Scholar 

  32. Yengo, C.M., Chrin, L., Rovner, A.S. & Berger, C.L. Intrinsic tryptophan fluorescence identifies specific conformational changes at the actomyosin interface upon actin binding and ADP-release. Biochemistry 38, 14515–14523 (1999).

    Article  CAS  Google Scholar 

  33. Fisher, A.J. et al. Structural studies of myosin:nucleotide complexes: a revised model for the molecular basis of muscle contraction. Biophys. J. 68, 19S–26S (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Holmes, K.C. Muscle proteins - their actions and interactions. Curr. Opin. Struct. Biol. 6, 781–789 (1996).

    Article  CAS  Google Scholar 

  35. Pardee, J.D. & Spudich, J.A. Purification of muscle actin. Methods Enzymol. 85B, 164–181 (1982).

    Article  Google Scholar 

  36. Trybus, K.M. Regulation of expressed truncated smooth muscle myosins. Role of the essential light chain and tail length. J. Biol. Chem. 269, 20819–20822 (1994).

    CAS  PubMed  Google Scholar 

  37. Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988).

    Article  CAS  Google Scholar 

  38. Owen, C.H., Morgan, D.G. & DeRosier, D.J. Image analysis of helical objects: the Brandeis helical package. J. Struct. Biol. 116, 167–175 (1996).

    Article  CAS  Google Scholar 

  39. DeRosier, D.J. & Moore, P.B. Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J. Mol. Biol. 52, 355–369 (1970).

    Article  CAS  Google Scholar 

  40. Trachtenberg, S. & DeRosier, D.J. Three-dimensional structure of the frozen-hydrated flagellar filament: the left-handed filament of Salmonella typhimurium. J. Mol. Biol. 195, 581–601 (1987).

    Article  CAS  Google Scholar 

  41. Hanein, D. et al. An atomic model of fimbrin binding to F-actin and its implications for filament crosslinking and regulation. Nature Struct. Biol. 5, 787–792 (1998).

    Article  CAS  Google Scholar 

  42. Priestle, J.P. Stereochemical dictionaries for protein structure refinement and model building. Structure 2, 911–913 (1994).

    Article  CAS  Google Scholar 

  43. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  44. von Mises, R. Mathematical theory of probability and statistics (Academic Press, New York; 1964).

    Google Scholar 

  45. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  46. Esnouf, R. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  47. Bacon, D. & Anderson, W. A fast algorithm for rendering space-filling molecule pictures. J. Mol. Graph. 6, 219–220 (1988).

    Article  Google Scholar 

  48. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants to D.J.D., S.L. and K.M.T. and a National Science Foundation grant to S.L. for the support of G.O. The authors acknowledge funds from the W.M. Keck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorit Hanein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkmann, N., Hanein, D., Ouyang, G. et al. Evidence for cleft closure in actomyosin upon ADP release. Nat Struct Mol Biol 7, 1147–1155 (2000). https://doi.org/10.1038/82008

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing