Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The energetics of T4 lysozyme reveal a hierarchy of conformations

Abstract

We have used native state exchange to examine the energy landscape of the well-characterized protein T4 lysozyme. Although the protein exhibits two-state behavior by traditional probes, the energy landscape determined here is much more complex. The average stability of the C-terminal subdomain is significantly higher than that for the N-terminus suggesting at least two regions of unfolding. At a more detailed level, there appears to be a broad continuum of stabilities throughout each region. The overall subdomain hierarchy of energies does not mirror data on the folding pathway for this protein, challenging the relationship between energy landscapes and folding trajectories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Equilibrium unfolding of T4 lysozyme.
Figure 2: Distribution of unfolding free energies (ΔGunf) for T4 lysozyme.
Figure 3: The calculated unfolding free energies (ΔGunf) and corresponding m-values define a broad continuum of stabilities.
Figure 4: The measured free energy of exchange (ΔGunf) is correlated with the Cα–Cα distance from Ile 100 in the E-helix.

Similar content being viewed by others

References

  1. Chamberlain, A.K., Handel, T.M. & Marqusee, S. Detection of rare partially folded molecules in equilibrium with the native conformation of RNase H. Nature Struct. Biol. 3, 782–787 (1996).

    Article  CAS  Google Scholar 

  2. Clarke, J. & Itzhaki, L.S. Hydrogen exchange and protein folding. Curr. Opin. Struct. Biol. 8, 112 –118 (1998).

    Article  CAS  Google Scholar 

  3. Raschke, T.M. & Marqusee, S. Hydrogen exchange studies of protein structure. Curr. Opin. Biotechnol. 9, 80–86 (1998).

    Article  CAS  Google Scholar 

  4. Englander, S.W., Sosnick, T.R., Englander, J.J. & Mayne, L. Mechanisms and uses of hydrogen exchange. Curr. Opin. Struct. Biol. 6, 18–23 (1996).

    Article  CAS  Google Scholar 

  5. Parker, M.J., Dempsey, C.E., Hosszu, L.L., Waltho, J.P. & Clarke, A.R. Topology, sequence evolution and folding dynamics of an immunoglobulin domain. Nature Struct. Biol. 5, 194–198 ( 1998).

    Article  CAS  Google Scholar 

  6. Clarke, J., Itzhaki, L.S. & Fersht, A.R. Hydrogen exchange at equilibrium: a short cut for analysing protein-folding pathways? Trends Biochem. Sci. 22, 284–287 (1997).

    Article  CAS  Google Scholar 

  7. Englander, S.W. Native-state HX. Trends Biochem. Sci. 23, 378; (1998).

    Article  CAS  Google Scholar 

  8. Woodward, C. & Li, R. The slow-exchange core and protein folding. Trends Biochem. Sci. 23, 379– 381 (1998).

    Article  CAS  Google Scholar 

  9. Clarke, J., Itzhaki, L.S. & Fersht, A.R. A reply to Englander and Woodward. Trends Biochem. Sci. 23, 379–381 (1998).

    Article  CAS  Google Scholar 

  10. Mayo, S.L. & Baldwin, R.L. Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A. Science 262, 873–876 ( 1993).

    Article  CAS  Google Scholar 

  11. Bai, Y., Sosnick, T.R., Mayne, L. & Englander, S.W. Protein folding intermediates: native-state hydrogen exchange. Science 269, 192–197 (1995).

    Article  CAS  Google Scholar 

  12. Fuentes, E.J. & Wand, A.J. Local dynamics and stability of apocytochrome b562 examined by hydrogen exchange. Biochemistry 37, 3687–3698 (1998).

    Article  CAS  Google Scholar 

  13. Bhuyan, A.K. & Udgaonkar, J.B. Two structural subdomains of barstar detected by rapid mixing NMR measurement of amide hydrogen exchange. Proteins 30, 295–308 (1998).

    Article  CAS  Google Scholar 

  14. Matthews, B.W. Studies on protein stability with T4 lysozyme. Adv. Protein Chem. 46, 249–278 ( 1995).

    Article  CAS  Google Scholar 

  15. Matthews, B.W. Structural and genetic analysis of the folding and function of T4 lysozyme. FASEB J. 10, 35–41 (1996).

    Article  CAS  Google Scholar 

  16. Elwell, M. & Schellman, J. Phage T4 lysozyme. Physical properties and reversible unfolding. Biochim. Biophys. Acta 386, 309–323 (1975).

    Article  CAS  Google Scholar 

  17. Weaver, L.H. & Matthews, B.W. Structure of bacteriophage T4 lysozyme refined at 1.7 A resolution. J. Mol. Biol. 193, 189–199 (1987).

    Article  CAS  Google Scholar 

  18. Faber, H.R. & Matthews, B.W. A mutant T4 lysozyme displays five different crystal conformations. Nature 348, 263–266 (1990).

    Article  CAS  Google Scholar 

  19. Dixon, M.M., Nicholson, H., Shewchuk, L., Baase, W.A. & Matthews, B.W. Structure of a hinge-bending bacteriophage T4 lysozyme mutant, Ile3 to Pro. J. Mol. Biol. 227, 917–933 (1992).

    Article  CAS  Google Scholar 

  20. McHaourab, H.S., Lietzow, M.A., Hideg, K. & Hubbell, W.L. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry 35, 7692– 7704 (1996).

    Article  CAS  Google Scholar 

  21. McHaourab, H.S., Oh, K.J., Fang, C.J. & Hubbell, W.L. Conformation of T4 lysozyme in solution. Hinge-bending motion and the substrate-induced conformational transition studied by site-directed spin labeling. Biochemistry 36, 307–316 (1997).

    Article  CAS  Google Scholar 

  22. Anderson, D., Becktel, W. & Dahlquist, F. The folding, stability, and dynamics of T4 lysozyme: A perspective using nuclear magnetic resonance. In NMR of proteins. (eds Clore, G. & Gronenborn, A.) 258–304 (CRC Press, Boca Raton, Florida; 1993).

    Google Scholar 

  23. Llinás, M. & Marqusee, S. Subdomain interactions as a determinant in the folding and stability of T4 lysozyme. Protein Sci. 7, 96–104 ( 1998).

    Article  Google Scholar 

  24. Bahar, I., Erman, B., Haliloglu, T. & Jernigan, R.L. Efficient characterization of collective motions and interresidue correlations in proteins by low-resolution simulations. Biochemistry 36, 13512– 13523 (1997).

    Article  CAS  Google Scholar 

  25. de Groot, B.L., Hayward, S., van Aalten, D.M., Amadei, A. & Berendsen, H.J. Domain motions in bacteriophage T4 lysozyme: a comparison between molecular dynamics and crystallographic data. Proteins 31, 116–127 (1998).

    Article  CAS  Google Scholar 

  26. Arnold, G.E., Manchester, J.I., Townsend, B.D. & Ornstein, R.L. Investigation of domain motions in bacteriophage T4 lysozyme. J. Biomol. Struct. Dyn. 12, 457–474 (1994).

    Article  CAS  Google Scholar 

  27. Arnold, G.E. & Ornstein, R.L. Protein hinge bending as seen in molecular dynamics simulations of native and M61 mutant T4 lysozymes. Biopolymers 41, 533–544 (1997).

    Article  CAS  Google Scholar 

  28. Hilser, V.J., Townsend, B.D. & Freire, E. Structure-based statistical thermodynamic analysis of T4 lysozyme mutants: structural mapping of cooperative interactions. Biophys. Chem. 64, 69–79 (1997).

    Article  CAS  Google Scholar 

  29. Lu, J. & Dahlquist, F.W. Detection and characterization of an early folding intermediate of T4 lysozyme using pulsed hydrogen exchange and two-dimensional NMR. Biochemistry 31, 4749–4756 (1992).

    Article  CAS  Google Scholar 

  30. Hvidt, A. & Nielsen, S.O. Hydrogen exchange in proteins. Adv. Protein Chem. 21, 287– 386 (1966).

    Article  CAS  Google Scholar 

  31. Englander, S.W. & Kallenbach, N.R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q. Rev. Biophys. 16, 521–655 (1983).

    Article  CAS  Google Scholar 

  32. Bai, Y., Milne, J.S., Mayne, L. & Englander, S.W. Primary structure effects on peptide group hydrogen exchange. Proteins 17, 75–86 (1993).

    Article  CAS  Google Scholar 

  33. Chamberlain, A.K. & Marqusee, S. Touring the landscapes: partially folded proteins examined by hydrogen exchange. Structure 5, 859–863 ( 1997).

    Article  CAS  Google Scholar 

  34. Bai, Y., Milne, J.S., Mayne, L. & Englander, S.W. Protein stability parameters measured by hydrogen exchange. Proteins 20, 4–14 (1994).

    Article  CAS  Google Scholar 

  35. Hilser, V.J. & Freire, E. Structure-based calculation of the equilibrium folding pathway of proteins. Correlation with hydrogen exchange protection factors. J. Mol. Biol. 262, 756–772 (1996).

    Article  CAS  Google Scholar 

  36. Krug, R.R., Hunter, W.G. & Greiger, R.A. Enthalpy-entropy compensation. 1. some fundamental statistical problems associated with the analysis of van't Hoff and Arrhenius data. J. Phys. Chem. 80, 2335– 2341 (1976).

    Article  CAS  Google Scholar 

  37. Jackson, S.E. How do small single domain proteins fold? Folding & Design 3, R81–91 ( 1998).

    Article  CAS  Google Scholar 

  38. Roder, H. & Colon, W. Kinetic role of early intermediates in protein folding. Curr. Opin. Struct. Biol. 7, 15–28 (1997).

    Article  CAS  Google Scholar 

  39. Chen, B.L., Baase, W.A. & Schellman, J.A. Low-temperature unfolding of a mutant of phage T4 lysozyme. 2. Kinetic investigations. Biochemistry 28, 691–699 (1989).

    Article  CAS  Google Scholar 

  40. McIntosh, L.P., Wand, A.J., Lowry, D.F., Redfield, A.G. & Dahlquist, F.W. Assignment of the backbone 1H and 15N NMR resonances of bacteriophage T4 lysozyme. Biochemistry 29, 6341–6362 (1990).

    Article  CAS  Google Scholar 

  41. Zhang, X.J. & Matthews, B.W. EDPDB: a multifunctional tool for protein structure analysis. J. Appl. Crystallogr. 28, 624 (1995).

    Article  CAS  Google Scholar 

  42. Nicholson, H., Anderson, D.E., Dao-pin, S. & Matthews, B.W. Analysis of the interaction between charged side chains and the alpha-helix dipole using designed thermostable mutants of phage T4 lysozyme. Biochemistry 30, 9816–9828 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Fischer, I. Griswold, J. Hollien, G. Lazar, and M.J. Parker for discussion and critical reading of the manuscript. We also thank A.J. Wand and E. Fuentes for discussion about data analysis. This work was supported by grants from the National Institutes of Health (S.M. and F.W.D.) and the W. M. Keck Foundation. M.L. was supported by an NIH Molecular Biophysics Training Grant and B.G. was supported by a Department of Health and Human Services, National Research Service Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Marqusee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llinás, M., Gillespie, B., Dahlquist, F. et al. The energetics of T4 lysozyme reveal a hierarchy of conformations. Nat Struct Mol Biol 6, 1072–1078 (1999). https://doi.org/10.1038/14956

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/14956

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing