Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solution structure of a DNA duplex containing a replicable difluorotoluene–adenine pair

Abstract

A nonpolar aromatic nucleoside derivative based on 2,4-difluorotoluene (F), a non-hydrogen bonding shape analog of thymidine, was recently shown to be replicated against adenine with high efficiency and fidelity. This led to the suggestion that geometric matching, potentially even in the absence of hydrogen bonding between bases in a pair, may be sufficient to direct nucleotide selection during replication. We have examined the solution structure of the F–A pair in the context of a 12 base pair DNA duplex. We find that, despite the destabilization caused by this analog, the F–A pair very closely resembles that of a T·A pair in the same context. This lends support to the importance of shape matching in replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Schematic model of a 2,4-difluorotoluene adenine pair.
Figure 2: a, Thermal denaturation curves of F6–A19 duplex (red) and a control duplex (blue) containing thymine in place of 2,4-difluorotoluene.
Figure 3: a, Superposition of 12 randomly selected final structures, six of which started from B-form DNA and six from A-form DNA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lesser, D.R., Kurpiewski, M.R. & Jen-Jacobson, L. Science 250, 776– 786 (1990).

    Article  CAS  Google Scholar 

  2. Brennan, C.A., Van Cleeve, M.D. & Gumport, R.I. J. Biol. Chem. 261, 7270– 7278 (1986).

    CAS  PubMed  Google Scholar 

  3. Seela, F. & Driller, H. Nucleic Acids Res. 14 , 2319–2332 (1986).

    Article  CAS  Google Scholar 

  4. Ono, A., Sato, M., Ohtani, Y. & Ueda, T. Nucleic Acids Res. 12, 8939–8949 ( 1984).

    Article  CAS  Google Scholar 

  5. Newman, P.C. et al. Biochemistry 29, 9891– 9901 (1990).

    Article  CAS  Google Scholar 

  6. Aiken, C.R. & Gumport, R.I. Meth. Enz. 208, 433–457 (1991).

    Article  CAS  Google Scholar 

  7. Smith, S.A., Rajur, S.B. & McLaughlin, L.W. Nature Struct. Biol. 1, 18– 22 (1994).

    Article  CAS  Google Scholar 

  8. Schweitzer, B.A. & Kool, E.T. J. Org. Chem. 59, 7238–7242 (1994).

    Article  CAS  Google Scholar 

  9. Chaudhuri, N.C., Ren, X.F.R. & Kool, E.T. SYNLETT, 341–347 (1996).

    Google Scholar 

  10. Moran, S., Ren, X.F.R. & Kool, E.T. J. Am. Chem. Soc. 119, 2056– 2057 (1997).

    Article  CAS  Google Scholar 

  11. Moran, S., Ren, X.F.R. & Kool, E.T. Proc. Natl. Acad. Sci. USA 94, 10506–10511 (1997).

    Article  CAS  Google Scholar 

  12. Schweitzer, B.A. & Kool, E.T. J. Am. Chem. Soc. 117, 1863–1872 ( 1994).

    Article  Google Scholar 

  13. Guckian, K.M. & Kool, E.T. Angew. Chem. Int. Ed. 36, 2825–2828 (1998).

    Article  Google Scholar 

  14. Harley, V.R., Lovell-Badge, R. & Goodfellow, P.N. Nucleic Acids Res. 22, 1500 –1501 (1994).

    Article  CAS  Google Scholar 

  15. Leroy, J.L., Kochoyan, M., Huynhdinh, T. & Gueron, M. J. Mol. Biol. 200, 223–238 (1988).

    Article  CAS  Google Scholar 

  16. Gueron, M. & Leroy, J.L. Meth. Enz. 261, 383–413 (1995).

    Article  CAS  Google Scholar 

  17. Baleja, J.D., Pon, R.T. & Sykes, B.D. Biochemistry 29, 4828– 4839 (1990).

    Article  CAS  Google Scholar 

  18. Gronenborn, A.M. & Clore, G.M. Biochemistry 28, 5978–5984 (1989).

    Article  CAS  Google Scholar 

  19. Clore, G.M., et al. Biochemistry 27, 4185– 4197 (1988).

    Article  CAS  Google Scholar 

  20. Gorenstein, D.G. 31P NMR of DNA. Meth. Enz. 211, 254–286 (1992).

    Article  CAS  Google Scholar 

  21. Borgias, B.A. & James, T.L. J. Magn. Reson. 87, 475–487 (1990).

    CAS  Google Scholar 

  22. James, T.L. Curr. Opin. Struct. Biol. 1, 1042– 1053 (1991).

    Article  CAS  Google Scholar 

  23. Schmitz, U. & James, T.L. Meth. Enz. 261, 3–44 (1995).

    Article  CAS  Google Scholar 

  24. Meyer, M. & Suhnel, J. J. Biomol. Struct. Dyn. 14, 117 (1997).

    Google Scholar 

  25. Guckian, K.M. et al. J. Am. Chem. Soc. 118, 8182– 8183 (1996).

    Article  CAS  Google Scholar 

  26. Rastinejad, F., Evilia, C. & Lu, P. Meth. Enz. 261, 560–576 (1995).

    Article  CAS  Google Scholar 

  27. Chaudhuri, N.C. & Kool, E.T. Tetrahedron Lett. 36, 1795–1798 ( 1995).

    Article  CAS  Google Scholar 

  28. Huang, G. & Krugh, T.R. Anal. Biochem. 190, 21–25 (1990).

    Article  CAS  Google Scholar 

  29. Freier, S.M., Burger, B.J., Alkema, D., Neilson, T. & Turner, D.H. Biochemistry 22, 6198– 6206 (1983).

    Article  CAS  Google Scholar 

  30. Petersheim, M. & Turner, D.H. Biochemistry 22, 256–263 ( 1983).

    Article  CAS  Google Scholar 

  31. Ferrin, T.E., Huang, C.C., Jarvis, L.E. & Landgridge, R. J. Mol. Graphics 6, 13–27 (1988).

    Article  CAS  Google Scholar 

  32. Huang, C.C., Pettersen, E.F., Klein, T.E., Ferrin, T.E. & Landgridge, R. J. Mol. Gaphics 9 , 230–236 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the NIH for support. We thank M. Fountain for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas R. Krugh or Eric T. Kool.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guckian, K., Krugh, T. & Kool, E. Solution structure of a DNA duplex containing a replicable difluorotoluene–adenine pair. Nat Struct Mol Biol 5, 954–959 (1998). https://doi.org/10.1038/2930

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2930

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing