Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of Aplysia ADP ribosyl cyclase, a homologue of the bifunctional ectozyme CD38

Abstract

ADP ribosyl cyclase synthesizes the novel secondary messenger cyclic ADP ribose (cADPR) utilizing NAD as a substrate. The enzyme shares extensive sequence similarity with two lymphocyte antigens, CD38 and BST-1, which hydrolyse as well as synthesize cADPR. The crystal structure provides a model for these cell surface enzymes. Cyclase contains two spatially separated pockets composed of sequence conserved residues, suggesting that the cyclization reaction may entail use of distinct sites. The enzyme dimer encloses a cavity which may entrap the intermediate, ADP ribose.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lee, H.C. Specific binding of cyclic ADP-ribose to calcium-storing microsomes from sea urchin eggs. J. Biol. Chem. 266, 2276–2281 (1991).

    CAS  PubMed  Google Scholar 

  2. Lee, H.C. Cyclic ADP-ribose: a new member of a super family of signalling cyclic nucleotides. Cell. Signalling 6, 591–600 (1994).

    Article  CAS  Google Scholar 

  3. Lee, H.C., Galione, A. & Walseth, T.F. Cyclic ADP-ribose: metabolism and calcium mobilizing function. Vitamins and Hormones 48, 199–258 (1994).

    Article  CAS  Google Scholar 

  4. Lee, H.C., Aarhus, R. & Walseth, T.F. Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science 261, 352–355 (1993).

    Article  CAS  Google Scholar 

  5. Lee, H.C., Aarhus, R., Graeff, R., Gurnack, M.E. & Walseth, T.F. Cyclic ADP ribose activation of the ryanodine receptor is mediated by calmodulin. Nature 370, 307–309 (1994).

    Article  CAS  Google Scholar 

  6. Hellmich, M.R. & Strumwasser, F. Purification and characterization of a molluscan egg-specific NADase, a second-messenger enzyme. Cell Regul. 2, 193–202 (1991).

    Article  CAS  Google Scholar 

  7. Lee, H.C. & Aarhus, R. ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Regul. 2, 203–209 (1991).

    Article  CAS  Google Scholar 

  8. Galione, A., White, A., Willmott, N., Turner, M., Potter, B.V.L. & Watson, S.P. cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature 365, 456–459 (1993).

    Article  CAS  Google Scholar 

  9. Walseth, T.F. & Lee, H.C. Synthesis and characterization of antagonists of cydic-ADP-ribose-induced Ca2+ release. Biochem. Biophys. Acta. 1178, 235–242 (1993).

    Article  CAS  Google Scholar 

  10. Lee, H.C., Graeff, R. & Walseth, T.F. Cyclic ADP-ribose and its metabolic enzymes. Biochimie 77, 345–355 (1995).

    Article  CAS  Google Scholar 

  11. Lee, H.C., Aarhus, R. & Levitt, D. The crystal structure of cyclic ADP–ribose. Nature Struct. Biol. 1, 143–144 (1994).

    Article  CAS  Google Scholar 

  12. Howard, M. et al. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262, 1056–1059 (1993).

    Article  CAS  Google Scholar 

  13. Takasawa, S. et al. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J. Biol. Chem. 268, 26052–26054 (1993).

    CAS  PubMed  Google Scholar 

  14. Lund, F., Solvason, N., Grimaldi, J.C., Parkhouse, R.M.E. & Howard, M. Murine CD38: an immunoregulatory ectoenzyme. Immunol. Today 16, 469–473 (1995).

    Article  CAS  Google Scholar 

  15. Kaisho, T. et al. BST-1, a surface molecule of bone marrow stromal cell lines that facilitates pre-B-cell growth. Proc. Natl. Acad. Sci. USA 91, 5325–5329 (1994).

    Article  CAS  Google Scholar 

  16. Dong, C., Wang, J., Neame, P. & Cooper, M.D. The murine BP-3 gene encodes a relative of the CD38/NAD glycohydrolase family. Intnatl. Immunol. 6, 1353–1360 (1994).

    Article  CAS  Google Scholar 

  17. Itoh, M. et al. Molecular cloning of murine BST-1 having homology with CD38 and Aplysia ADP-ribosyl cyclase. Biochem. Biophys. Res. Comm. 203, 1309–1317 (1994).

    Article  CAS  Google Scholar 

  18. Glick, D.L. et al. Primary structure of a molluscan egg-specific NADase, a second-messenger enzyme. Cell Regulation 2, 211–218 (1991).

    Article  CAS  Google Scholar 

  19. States, D.J., Walseth, T.F. & Lee, H.C. Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38. Trends Biochem. Sci. 17, 495 (1992).

    Article  CAS  Google Scholar 

  20. Jackson, D.G. & Bell, J.I. Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation. J. Immunol. 144, 2811–2815 (1990).

    CAS  PubMed  Google Scholar 

  21. Harada, N. et al. Expression cloning of a cDNA encoding a novel murine B cell activation marker. J. Immunol. 151, 3111–3118 (1993).

    CAS  PubMed  Google Scholar 

  22. Koguma, T. et al. Cloning and characterization of cDNA encoding rat ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase (homologueto human CD38) from islets of Langerhans. Biochim. Biophys. Acta 1223, 160–162 (1994).

    Article  CAS  Google Scholar 

  23. Li, Q. et al. A cloned rat CD38-homologous protein and its expression in pancreatic islets. Biochem. Biophys. Res. Comm. 202, 629–636 (1994).

    Article  CAS  Google Scholar 

  24. Richardson, J.S. Describing patterns of protein tertiary structure. Meths. Enzymol. 115, 341–358 (1985).

    Article  CAS  Google Scholar 

  25. Holm, L. & Sander, C. Families of structurally similar proteins. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  26. Volz, K. & Matsumura, P. Crystal structure of Escherichia coli CheY refined at 1.7-Å resolution. J. Biol. Chem. 266, 15511–15519 (1991).

    CAS  PubMed  Google Scholar 

  27. Scapin, G., Grubmeyer, C. & Sacchettini, J.C. Crystal structure of orotate phosphoribosyltransferase. Biochem. 33, 1287–1294 (1994).

    Article  CAS  Google Scholar 

  28. Czworkowski, J., Wang, J., Steitz, T.A. & Moore, P.B. The crystal structure of elongation factor G complexed with GDP, at 2.7Å resolution. EMBO J. 13, 3661–3668 (1994).

    Article  CAS  Google Scholar 

  29. Richardson, J.S. The anatomy and taxonomy of protein structure. Adv. Prot. Chem. 34, 167–339 (1981).

    CAS  Google Scholar 

  30. Connoly, M.L. Solvent accessible surfaces of proteins and nucleic acids. Science 221, 709–713 (1983).

    Article  Google Scholar 

  31. Nata, K. et al. The structure of the Aplysia kurodai gene encoding ADP-ribosyl cyclase, a second–messenger enzyme. Gene 158, 213–218 (1995).

    Article  CAS  Google Scholar 

  32. Leahy, D.J., Axel, R. & Hendrickson, W.A. Crystal structure of a soluble form of the human T cell coreceptor CDS at 2.6 Å resolution. Cell 68, 1145–1162 (1992).

    Article  CAS  Google Scholar 

  33. Yeh, J.I., Biemann, H.-P., Pandit, J., Koshland, D.E. & Kim, S.-H. The three-dimensional structure of the ligand-binding domain of a wild-type bacterial chemotaxis receptor: structural comparison to the cross-linked mutant forms and conformational changes upon ligand binding. J. Biol. Chem. 268, 9787–9792 (1993).

    CAS  PubMed  Google Scholar 

  34. Fryxell, K.B., O'Donoghue, K., Graeff, R.M., Lee, H.C. & Branton, W.D. Functional expression of soluble forms of human CD38 in Escherichia coli and Pichia pastoris. Protein Expres. Purif. 6, 329–336 (1995).

    Article  CAS  Google Scholar 

  35. Tohgo, A. et al. Essential cysteine residues for cyclic ADP-ribose synthesis and hydrolysis by CD38. J. Biol. Chem. 269, 28555–28557 (1994).

    CAS  PubMed  Google Scholar 

  36. Kim, S.-H. “Frozen” dynamic dimer model for transmembrane signaling in bacterial chemotaxis receptors. Protein Sci. 3, 159–165 (1994).

    Article  Google Scholar 

  37. Flier, J.S. & Underbill, L.H. The tumor necrosis factor ligand and receptorfamilies. New England J. Med. 334, 1717–1725 (1996).

    Article  Google Scholar 

  38. Silvennoinen, O. et al. CD38 signal transduction in human B cell precursors. J. Immunol. 156, 100–107 (1996).

    CAS  PubMed  Google Scholar 

  39. Guida, L., Franco, L., Zocchi, E. & De Flora, A. Structural role of disulfide bridges in the cyclic ADP-ribose related bifunctional ectoenzyme CD38. FEBS Lett. 368, 481–484 (1995).

    Article  CAS  Google Scholar 

  40. Grimaldi, J.C. et al. CD38-mediated ribosylation of proteins. J. Immunol. 155, 811–817 (1995).

    CAS  PubMed  Google Scholar 

  41. Armstrong, S.R., Cook, W.J., Short, S.A. & Ealick, S.E. Crystal structures of nucleoside 2-deoxyribosyltransferase in native and ligand-bound forms reveal architecture of the active site. Structure 4, 97–107 (1996).

    Article  CAS  Google Scholar 

  42. Bell, C.E. & Eisenberg, D. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide. Biochemistry 35, 1137–1149 (1996).

    Article  CAS  Google Scholar 

  43. Li, M., Dyda, F., Benhar, I., Pastan, I. & Davies, D.R. Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: Implications for the activation process and for ADP ribosylation. Proc. Natl. Acad. Sci. USA 93, 6902–6906 (1996).

    Article  CAS  Google Scholar 

  44. Weiss, M.S., Blanke, S.R., Collier, R.J. & Eisenberg, D. Structure of the isolated catalytic domain of diphtheria toxin. Biochemistry 34, 773–781 (1995).

    Article  CAS  Google Scholar 

  45. Li, M., Dyda, F., Benhar, I., Pastan, I. & Davies, D.R. The crystal structure of Pseudomonas aeruginosa exotoxin domain III with nicotinamide and AMP: Conformational differences with intact exotoxin. Proc. Natl. Acad. Sci. USA 92, 9308–9312 (1995).

    Article  CAS  Google Scholar 

  46. Prasad, G.S., Levitt, D.G., Lee, H.C. & Stout, C.D. Crystallization of ADP-ribosyl cyclase from Aplysia californica. Proteins Struct. Funct. Genet. 24, 138–140 (1996).

    Article  CAS  Google Scholar 

  47. Howard, A.J., Nielsen, C. & Xuong, Ng.H. Software for diffractometer with multiwire area detector. Meths. Enzymol. 114A, 452–472 (1985).

    Article  Google Scholar 

  48. Leslie, A.G.W. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

    Google Scholar 

  49. McRee, D.E. A visual protein crystallographic software system for XII/Xview. J. Molec. Graphics 10, 44–47 (1992).

    Article  Google Scholar 

  50. Cowtan, K. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

    Google Scholar 

  51. Levitt, D.G. & Banaszak, L.J. A new routine for thinning, editing and fitting MIR maps using real-space molecular dynamics. J. Appl. Crystallogr. 26, 736–745 (1993).

    Article  CAS  Google Scholar 

  52. Kleyweyt, G.L. & Jones, T.A. in From First Map to Final Model (eds S. Bailey, R. Hubbard, D. Waller) 59 (SERC Daresbury Laboratory, 1994).

    Google Scholar 

  53. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A42, 140–149 (1986).

    Article  CAS  Google Scholar 

  54. Brünger, A.T., Karplus, M. & Petsko, G.A. Crystallographic refinement by simulated annealing: application to crambin. Acta Crystallogr. A45, 50–61 (1989).

    Article  Google Scholar 

  55. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  56. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  57. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

  58. Furuya, Y. et al. Cloning of a cDNA encoding rat bone marrow stromal cell antigen 1 (BST-1) from the islets of Langerhans. Gene 165, 329–330 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, G., McRee, D., Stura, E. et al. Crystal structure of Aplysia ADP ribosyl cyclase, a homologue of the bifunctional ectozyme CD38. Nat Struct Mol Biol 3, 957–964 (1996). https://doi.org/10.1038/nsb1196-957

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1196-957

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing