Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ferryl intermediates of catalase captured by time-resolved Weissenberg crystallography and UV-VIS spectroscopy

Abstract

Various enzymes use semi-stable ferryl intermediates and free radicals during their catalytic cycle, amongst them haem catalases. Structures for two transient intermediates (compounds I and II) of the NADPH-dependent catalase from Proteus mirabilis (PMC) have been determined by time-resolved X-ray crystallography and single crystal microspectrophotometry. The results show the formation and transformation of the ferryl group in the haem, and the unexpected binding of an anion during this reaction at a site distant from the haem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kirkman, H.N. & Gaetani, G.F. Catalase: A tetrameric enzyme with four tightly bound molecules of NADPH. Proc. Natl Acad. Sci. USA 81, 4343–4347 (1984).

    Article  CAS  Google Scholar 

  2. Kirkman, H.N., Galiano, S. & Gaetani, G.F. The function of catalase-bound NADPH. J. Biol. Chem. 262, 660–666 (1987).

    CAS  PubMed  Google Scholar 

  3. Hillar, A. & Nicholls, P. A mechanism for NADPH inhibition of catalase compound II formation. FEBS 314, 179–182 (1992).

    Article  CAS  Google Scholar 

  4. Hentze, M.W. Enzymes as RNA-binding proteins: A role for (di)nucleotide-binding domains. Trends Bioch. Sci. 19, 101–103 (1994).

    Article  CAS  Google Scholar 

  5. Clerch, L.B. A 3′ untranslated region of catalase mRNA composed of a stem-loop and dinucleotide repeat elements binds a 69-kDa redox-sensitive protein. Arch. Biochem. Biophys. 317, 267–274 (1995).

    Article  CAS  Google Scholar 

  6. Halliwell, B. & Gutteridge, J.M.C. Oxygen toxicity, oxygen radicals, transition metals and disease. J. Biochem. 219, 1–14 (1984).

    Article  CAS  Google Scholar 

  7. Vuillaume, M. Reduced oxygen species, mutation, induction and cancer initiation. Mut. Res. 186, 43–72 (1987).

    Article  CAS  Google Scholar 

  8. Mallery, S.R. et al. Cultured AIDS-related kaposis-sarcoma (AIDS-KS) cells demonstrate impaired bioenergetic adaptation to oxidant challenge. Implication for oxidant stress in AIDS-KS pathogenesis. J. Cell. Bioc. 59, 317–328 (1995).

    Article  CAS  Google Scholar 

  9. Deisseroth, A. & Dounce, A.L. Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiol. Rev. 50, 319–375 (1970).

    Article  CAS  Google Scholar 

  10. Retey, J. Enzymatic-reaction selectivity by negative catalysis or how do enzymes deal with highly reactive intermediates. Angewandte Chemie 29, 355–361 (1990).

    Article  Google Scholar 

  11. Edwards, S.L., Xuong, N.H., Hamlin, R.C. & Kraut, J. Crystal structure of cytochrome c peroxidase compound I. Biochemistry 26, 1503–1511 (1987).

    Article  CAS  Google Scholar 

  12. Fülöp, V. et al. Laue diffraction study on the structure of cytochrome c peroxidase compound I. Structure 2, 201–208 (1994).

    Article  Google Scholar 

  13. Gouet, P., Jouve, H.M. & Dideberg, O. Crystal structure of Proteus mirabilis PR catalase with and without bound NADPH. J. Mol. Biol. 249, 933–954 (1995).

    Article  CAS  Google Scholar 

  14. Fita, I., Silva, A.M., Murthy, M.R.N. & Rossmann, M.G. The Refined Structure of Beef Liver Catalase at 2.5 Å Resolution. Acta Cryst. B42, 497–515 (1986).

    Article  Google Scholar 

  15. Hajdu, J. & Andersson, I. Fast X-ray crystallography and time-resolved structures. Annu. Rev. Biophys. Biomolec. Struct. 22, 467–498 (1993).

    Article  CAS  Google Scholar 

  16. Farber, G.K. Laue crystallography - it's show down time. Curr. Biol. 5, 1088–1090 (1995).

    Article  CAS  Google Scholar 

  17. Mozzarelli, A. & Rossi, G.L. Proteing Function in the crystal. Annu. Rev. Biophys. Biomol. Struct. 25, 343–365 (1996).

    Article  CAS  Google Scholar 

  18. Jones, P. & Middlemiss, D.N. Formation of compound I by the reaction of catalase with peroxoacetic acid. J. Biochem. 130, 411–415 (1972).

    Article  CAS  Google Scholar 

  19. Hadfield, A.T. & Hajdu, J. A fast and portable micro-spectrophotometer for time-resolved X-ray diffraction experiments. J. Appl. Cryst. 26, 839–842 (1993).

    Article  CAS  Google Scholar 

  20. Jouve, H.M., Gaillard, J. & Pelmont, J. Characterization and spectral properties of Proteus mirabilis PR catalase. Can. J. Biochem. Cell Biol. 62, 935–944 (1984).

    Article  CAS  Google Scholar 

  21. Sakabe, N. A focusing Weissenberg camera with multi-layer-line screens for macromolecular crystallography. J. App. Cryst. 16, 542–547 (1983).

    Article  CAS  Google Scholar 

  22. Sakabe, N. X-ray data collection system for modern protein crystallography with a Weissenberg camera and an imaging plate using synchrotron radiation. Nucl. Instrument. Meths Phys. Res. 448–463 (1991).

  23. Andersson, I., Clifton, I.J., Fülöp, V. & Hajdu, J. High speed high resolution data collection on spinach Rubisco using a Weissenberg camera at the Photon Factory. In Crystallographic Computing 5: From Chemistry to Biology (Eds. D. Moras, A.D. Podjarny & J.C. Thierry) 20–28 (Oxford University Press; 1991).

    Google Scholar 

  24. Hajdu, J. & Andersson, I. Fast Weissenberg data collection as an alternative to the Laue method in kinetic crystallography. In Synchrotron Radiation in Biosciences (ed. B. Chance et al.) 110–116 (Oxford University Press; 1994).

    Google Scholar 

  25. Vainshtein, B.K. et al. Three-dimensional structure of catalase from Penicillium vitale at 2.0 Å resolution. J. Mol. Biol. 188, 49–61 (1986).

    Article  CAS  Google Scholar 

  26. Murshudov, G.N. et al. Three-dimensional structure of catalase from Micrococcus lysodeikticus at 1.5 Å resolution. FEBS. 312, 127–131 (1992).

    Article  CAS  Google Scholar 

  27. Bravo, J. et al. Crystal structure of catalase HPII from Escherichia coli. Structure 3, 491–502 (1995).

    Article  CAS  Google Scholar 

  28. Lardinois, O.M. Reactions of bovine liver catalase with superoxide radicals and hydrogen peroxyde. Free Rad. Res. 22, 251–274 (1995).

    Article  CAS  Google Scholar 

  29. Sevinc, M.S., Ens, W. & Loewen, P.C. The cysteines of catalase HPII of Escherichia coli, including Cys438 which is blocked, do not have a catalytic role. Eur. J. Biochem. 230, 127–132 (1995).

    Article  CAS  Google Scholar 

  30. Murshudov, G.N. et al. Structure of the heme d of Penicillium vitale and Escherichia coli catalases. J. Biol. Chem. 271, 8863–8868 (1996).

    Article  CAS  Google Scholar 

  31. Otwinowski, Z. Osciftation data reduction program. In Data collection and processing (eds. Sawyer, L., Isaac, N. & Bailey, S.) 56–62 (SERC, Daresbury Laboratory, UK; 1993).

    Google Scholar 

  32. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  33. Roussel, A. & Cambillau, C. TURBO-FRODO. In Silicon Graphics Geometry Partner Directory (ed. Silicon-Graphics) 77–78 (Silicon Graphics, Mountain View, CA, 1989).

    Google Scholar 

  34. Kraulis, P.J. MOLSCRIPT: a Program to produce both detailed and schematic plots of protein. J. Appl. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

  35. Buzy, A. et al. Complete amino acid sequence of Proteus mirabilis PR catalase. Occurrence of a methionine sulfone in the close proximity of the active site. J. Prot. Chem. 14, 59–72 (1995).

    Article  CAS  Google Scholar 

  36. Chance, M., Powers, L., Poulos, T. & Chance, B. Cytochrome c peroxidase compound ES is identical with horseradish peroxide compound I in iron-ligand distances. Biochemistry 25, 1266–1270 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gouet, P., Jouve, HM., Williams, P. et al. Ferryl intermediates of catalase captured by time-resolved Weissenberg crystallography and UV-VIS spectroscopy. Nat Struct Mol Biol 3, 951–956 (1996). https://doi.org/10.1038/nsb1196-951

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1196-951

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing