Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human mannose-binding protein carbohydrate recognition domain trimerizes through a triple α-helical coiled-coil

A Corrigendum to this article was published on 01 January 1996

Abstract

Human mannose-binding protein is a hexamer of trimers with each subunit consisting of an amino-terminal region rich in cysteine, 19 collagen repeats, a ‘neck’, and a carbohydrate recognition domain that requires calcium to bind ligand. A 148-residue peptide, consisting of the ‘neck’ and carbohydrate recognition domains forms trimers in solution and in crystals. The structure of this trimeric peptide has been determined in two different crystal forms. The ‘neck’ forms a triple α-helical coiled-coil. Each α-helix interacts with a neighbouring carbohydrate recognition domain. The spatial arrangement of the carbohydrate recognition domains suggest how MBP trimers form the basic recognition unit for branched oligosaccharides on microorganisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sastry, K. & Ezekowitz, R. A. Collectins: pattern recognition molecules involved in first line host defense. Curr. Opin. Immunol. 5, 59–66 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Holmskov, U., Malhotra, R., Sim, R.B. & Jensenius, J.C. Collectins: collagenous C-type lectins of the innate immune defense system. Immunol. Today 15, 67–74 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Hoppe, H.-J. & Reid, K.B.M. Collectins—soluble proteins containing collagenous regions and lectin domains—and their roles in innate immunity. Protein Sci. 3, 1143–1158 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ezekowitz, R.A.B. Ante-antibody immunity. Curr. Biol. 1, 60–62 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Super, M., Thiel, S., Lu, J., Levinsky, R.J. & Turner, M.W. Association of low levels of mannan-binding protein with a common defect of opsonisation. Lancet 2, 1236–1239 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Ikeda, K., Sannoh, T., Kawasaki, N., Kawasaki, T. & Yamashina, I. Serum lectin with known structure activates complement through the classical pathway. J. biol. Chem. 262, 7451–7454 (1987).

    CAS  PubMed  Google Scholar 

  7. Lu, J., Thiel, S., Wiedemann, H., Timpl, R. & Reid, K.B.M. Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme C1r2C1s2 complex, of the classical pathway of complement, without involvement of C1q. J. Immunol. 144, 2287–2294 (1990).

    CAS  PubMed  Google Scholar 

  8. Schweinle, J.E., Ezekowitz, R.A.B., Tenner, A.J., Kuhlman, M. & Joiner, K. A human mannose-binding protein activates the alternative complement pathway and enhances serum bactericidal activity on a mannose-rich isolate of Salmonella. J. clin. Invest. 84, 1821–1829 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matsushita, M. & Fujita, T. Activate of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease. J. exp. Med. 176, 1497–1502 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Drickamer, K., Dordal, M.S. & Reynolds, L. Mannose-binding proteins isolated from rat liver contain carbohydrate-recognition domains linked to collagenous tails: Complete primary structures and homology with pulmonary surfactant apoprotein. J. biol. Chem. 261, 6878–6887 (1986).

    CAS  PubMed  Google Scholar 

  11. Ezekowitz, R.A.B., Day, L.E. & Herman, G.A. A human mannose-binding protein is an acute-phase reactant that shares sequence homology with other vertebrate lectins. J. exp. Med. 16, 1034–1046 (1988).

    Article  Google Scholar 

  12. Super, M. et al. Distinct and overlapping functions of allelic forms of human mannose binding protein. Nature Genet. 2, 50–55 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Schweinle, J.E. et al. Truncated forms of mannose-binding protein multimerize and bind to mannose-rich Salmonella montevideo but fail to activate complement in vitro. J. biol. Chem. 268, 364–370 (1993).

    CAS  PubMed  Google Scholar 

  14. Chang, C.Y., Sastry, K.N., Gillies, S.D. Ezekowitz, R.A.B. & Sheriff, S. Crystallization and preliminary X-ray analysis of a trimeric form of human mannose binding protein. J. molec. Biol. 241, 125–127 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Drickamer, K. & Taylor, M.E. Biology of animal lectins. Ann. Rev. Cell Biol. 9, 237–264 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Hoppe, H.-J., Barlow, P.N. & Reid, K.B.M. A parallel three stranded α-helical bundle at the nucleation site of collagen triple-helix formation. FEBS Letts 344, 191–195 (1994).

    Article  CAS  Google Scholar 

  17. Kodama, T. et al. Type I macrophage scavenger receptor contains α-helical and collagen-like coiled coils. Nature 343, 531–535 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Beavil, A.J., Edmeades, R.L., Gould, H.J. & Sutton, B.J. α-Helical coiled-coil stalks in the low-affinity receptor for IgE (FcεRII/CD23) and related C-type lectins. Proc. natn. Acad. Sci. U.S.A. 89, 753–757 (1992).

    Article  CAS  Google Scholar 

  19. Thiel, S. & Reid, K.B.M. Structures and functions associated with the group of mammalian lectins containing collagen-like sequences. FEBS Letts 250, 78–84 (1989).

    Article  CAS  Google Scholar 

  20. Weis, W.I., Kahn, R., Fourme, R., Drickamer, K. & Hendrickson, W.A. Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science 254, 1608–1615 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Weis, W.I., Drickamer, K. & Hendrickson, W.A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360, 127–134 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Weis, W.I., Crichlow, G.V., Murthy, H.M.K., Hendrickson, W.A. & Drickamer, K. Physical characterization and crystallization of the carbohydrate-recognition domain of a mannose-binding protein from rat. J. biol. Chem. 266, 20678–20686 (1991).

    CAS  PubMed  Google Scholar 

  23. Bernstein, F.C. et al. The protein data bank: a computer-based archival file for macromolecular structures. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  PubMed  Google Scholar 

  24. Graves, B.J. et al. Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the Iec/EGF domains. Nature 367, 532–538 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Burley, S.K. & Petsko, G.A. Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229, 23–28 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Singh, J. & Thornton, J.M. The interaction between phenylalanine rings in proteins. FEBS Letts 191, 1–6 (1985).

    Article  CAS  Google Scholar 

  27. Harbury, P.B., Zhang, T., Kim, P.S. & Alber, T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262, 1401–1407 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Harbury, P.B., Kim, P.S. & Alber, T. A crystal structure of an isoleucine-zipper trimer. Nature 371, 80–83 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Wilson, I.A., Skehel, J.J. & Wiley, D.C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289, 366–373 (1981).

    Article  CAS  PubMed  Google Scholar 

  30. Ezekowitz, R.A.B., Kuhlman, M., Groopman, J.E. & Byrn, R.A. A human serum mannose-binding protein inhibits in vitro infection by the human immunodeficiency virus. J. exp. Med. 169, 185–196 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Brünger, A.T. Solution of a fab (26-10)/digoxin complex by generalized molecular replacement. acta crystallogr. A 47, 195–204 (1991).

    Article  Google Scholar 

  32. Brünger, A.T. X-PLOR version 3.1. a system for X-ray crystallography and NMR. (Yale University Press, New Haven, CT; 1992).

    Google Scholar 

  33. Sack, J.S. CHAIN—a crystallographic modeling program. J. molec. Graphics 6, 224–225 (1988).

    Article  Google Scholar 

  34. Engh, R.A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta crystallogr. A 47, 392–400 (1991).

    Article  Google Scholar 

  35. Luzzati, V. Traitement statistique des erreurs dans la determination des structures cristallines. Acta crystallogr. 5, 802–810 (1952).

    Article  Google Scholar 

  36. Carson, M. Ribbons 2.0. J. appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheriff, S., Chang, C. & Ezekowitz, R. Human mannose-binding protein carbohydrate recognition domain trimerizes through a triple α-helical coiled-coil. Nat Struct Mol Biol 1, 789–794 (1994). https://doi.org/10.1038/nsb1194-789

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1194-789

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing