Article | Published:

Crystal structure of the pleckstrin homology domain from dynamin

Nature Structural Biologyvolume 1pages782788 (1994) | Download Citation

Subjects

Abstract

The pleckstrin homology (PH) domain is a conserved module present in many signal transducing and cytoskeletal proteins. Here we report the 2.8 Å crystal structure of the PH domain from dynamin. This domain consists of seven β-strands forming two roughly orthogonal antiparallel β-sheets terminating with an amphipathic α-helix. The structure also reveals a non-covalent dimeric association of the PH domain and a hydrophobic pocket surrounded by a charged rim. The dynamin PH domain structure is discussed in relation to its potential role in mediating interactions between proteins.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Mayer, B.J., Ren, B.J., Clark, K.L. & Baltimore, D. A putative modular domain present in diverse signaling proteins. Cell 73, 629–630(1993).

  2. 2

    Haslam, R.J., Koide, H.B. & Hemmings, B.A. Pleckstrin domain homology. Nature 363, 309–310 (1993).

  3. 3

    Musacchio, A., Gibson, T., Rise, P., Thompson, J. & Saraste, M. The PH domain - a common piece in the structural patchwork of signaling proteins. Trends biochem. Sci., 343–348 (1993).

  4. 4

    Shaw, G. Identification of novel pleckstrin homology (PH) domains provides a hypothesis for PH domain function. Biochem. biophys. Res. Commun. 195, 1145–1151 (1993).

  5. 5

    Koch, W.J., Inglese, J., Stone, W.C. & Lefkowitz, R.J. The binding site for the β,γ-subunits of heterotrimetic G-proteins on the β-adrenergic-receptor kinase. J. biol. Chem. 268, 8256–8260 (1993).

  6. 6

    Touhara, K., Inglese, J., Pitcher, J.A., Shaw, G. & Lefkowitz, R.J. Binding of G-protein β,γ-subunits to pleckstrin homology domains. J. biol. Chem. 269, 10217–10220 (1993).

  7. 7

    Davis, L.H. & Bennett, V. Identification of 2 regions of β-spectrin that bind to distinct sites in brain membranes. J. biol. Chem. 269, 4409–4416 (1994).

  8. 8

    Yoon, H.S., Hajduk, P.J., Petros, A.M., Olejniczak, E.T., Meadows, R.P. & Fesik, S.W. Solution structure of a pleckstrin-homology domain. Nature 369, 672–675 (1994).

  9. 9

    Macias, M.J., Musacchio, A., Ponstingl, H., Nilges, M., Saraste, M. & Oschkinat, H. Structure of the pleckstrin homology domain from β- spectrin. Nature 369, 675–677 (1994).

  10. 10

    van der Bliek, A.M., Redelmeier, T.E., Damke, H., Tisdale, E.J., Meyerowitz, E.M. & Schmid, S.L. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J. cell Biol. 122, 553–563 (1993).

  11. 11

    Herskovits, J.S., Burgess, C.C., Obar, R.A. & Vallee, R.B., Effects of mutant rat dynamin on endocytosis. J. cell Biol. 122, 565–578 (1993).

  12. 12

    Shpetner, H.S. & Valle, R.B. Dynamin is a GTPase stimulated to high levels of activity by microtubules. Nature 355, 733–735 (1992).

  13. 13

    Ando, A. et al. A complex of Grb2 dynamin binds to tyrosine phosphorylated insulin-receptor substrate-after insulin-treatment. EMBO J. 13, 3033–3038 (1994).

  14. 14

    Gout, I. et al. The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell 75, 25–36 (1993).

  15. 15

    Thomas, I.D., Sideras, P., Smith, C.I.E., Vorechovsky, I., Chapman, V. & Paul, W.E. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science 261, 355–358 (1993).

  16. 16

    Rawlings, D.I. et al. Mutation of a unique region of Brutons tyrosine kinase in immunodeficient xid mice. Science 261, 358–361 (1993).

  17. 17

    Blundell, T.L. & Johnson, L.N. in Protein crystallography (Academic, London; 1976).

  18. 18

    Cowan, S.W., Newcomer, M.E. & Jones, T.A. Crystallographic refinement of human serum retinol binding-protein at 2Å resolution. Proteins. 8, 44–61 (1990).

  19. 19

    Sali, A. & Blundell, T.L. The definition of topological equivalence in homologous and analogous structures: a procedure involving a comparison of local properties and relationships. J. molec. Biol. 212, 403–442 (1990).

  20. 20

    Harlan, J.E., Hajduk, P.J., Yoon, H.S. & Fesik, S.W. Pleckstrin homology domains bind to phosphatidylinositol -4,5 - bisphosphate. Nature. 371, 168–170 (1994).

  21. 21

    Pawson, T. & Schlessinger, J. SH2 and SH3 domains. Current Biol. 3, 434–441 (1993).

  22. 22

    Simonds, W.F., Manji, H.K., Garritsen, A., Lupas, A.N. G-proteins and bark - a new twist for the coiled-coil. Trends biochem. Sci. 18, 315–317 (1993).

  23. 23

    Ellis, M.V., Carne, A. & Katan, M. Structural requirements of phosphatidylinositol-specific phospholipase-cδ for enzyme activity. Eur J. Biochem. 213, 339–347 (1993).

  24. 24

    Leslie, A.G.W. in Crystallographic Computing (Oxford Univ. Press; 1990).

  25. 25

    CCP4 Collaborative Computing Project 4 (Daresbury Lab Warrington, UK; 1992).

  26. 26

    Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta crystallogr. A47, 110–119 (1991).

  27. 27

    Driessen, H., Haneef, M.I.J., Harris, G.W., Howlin, B., Khan, G. & Moss, D.S. Restrain: restrained structure-factor least-squares refinement program for macromolecular structures. J. appl. Crystallogr. 22, 510–516 (1989).

  28. 28

    Brunger, A.T. X-PLOR Version 3.1 Manual (Yale Univ. Press, New Haven; 1992).

  29. 29

    Evans, S.V. SETOR: hardware-lighted three-dimensional solid model representations of marcomolecules. J. molec. Graphics 11, 134–138 (1993).

  30. 30

    Hutchinson, E.G. & Thornton, J.M. Hera - a program to draw schematic diagrams of protein secondary structures. Proteins 8, 203–212 (1990).

  31. 31

    Kabsch, W. & Sander, C. Dictionary of protein secondary structure. Pattern recognition of hydrogen bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

  32. 32

    Overington, J.R., Johnson, M.S., Sali, A. & BIundell, T.L. Tertiary structural constraints on protein evolutionary diversity: templates, key residues and structure prediction. Proc. Royal Soc. B241, 132–145 (1990).

Download references

Author information

Affiliations

  1. ICRF Unit of Structural Molecular Biology, Department of Crystallography, Birkbeck College, Malet Street, London, WC1E 7HX, UK

    • David Timm
    • , Lalitha Guruprasad
    •  & Tom Blundell
  2. Ludwig Institute for Cancer Research, 91 Riding House Street, London, WC1E 8BP, UK

    • Kamran Salim
    • , Ivan Gout
    •  & Mike Waterfield
  3. Department of Biochemistry and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK

    • Mike Waterfield

Authors

  1. Search for David Timm in:

  2. Search for Kamran Salim in:

  3. Search for Ivan Gout in:

  4. Search for Lalitha Guruprasad in:

  5. Search for Mike Waterfield in:

  6. Search for Tom Blundell in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/nsb1194-782

Further reading