Abstract
In the type III secretory system of bacterial pathogens, a large number of sequence-divergent but characteristically small (∼14–19 kDa), acidic (pl ∼4–5) chaperone proteins have been identified. We present the 1.74 Å resolution crystal structure of the Yersinia pseudotuberculosis chaperone SycE, whose action in promoting translocation of YopE into host macrophages is essential to Yersinia pathogenesis. SycE, a compact, globular dimer with a novel fold, has two large hydrophobic surface patches that may form binding sites for YopE or other type III components. These patches are formed by structurally key residues that are conserved among many chaperones, suggesting shared structural and functional relationships. A negative electrostatic potential covers almost the entire surface of SycE and is likely conserved in character, but not in detail, among chaperones. The structure provides the first structural insights into possible modes of action of SycE and type III chaperones in general.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
The Yersinia enterocolitica type three secretion chaperone SycO is integrated into the Yop regulatory network and binds to the Yop secretion protein YscM1
BMC Microbiology Open Access 05 July 2007
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Hueck, C.J. Microbiol. Mol. Biol. Rev. 62, 379–433 (1998).
Black, D.S. & Bliska, J.B. Mol. Microbiol. 37, 515–527 (2000).
Von Pawel-Rammingen, U. et al. Mol. Microbiol. 36, 737–748 (2000).
Forsberg, A. & Wolf-Watz, H. J. Bacteriol. 172, 1547–1555 (1990).
Wattiau, P. & Cornelis, G.R. Mol. Microbiol. 8, 123–131 (1993).
Woestyn, S., Sory, M.P., Boland, A., Lequenne, O. & Cornelis, G.R. Mol. Microbiol. 20, 1261–1271 (1996).
Schesser, K., Frithz-Lindsten, E. & Wolf-Watz, H. J. Bacteriol. 178, 7227–7233 (1996).
Frithz-Lindsten, E., Rosqvist, R., Johansson, L. & Forsberg, A. Mol. Microbiol. 16, 635–647 (1995).
Cheng, L.W., Anderson, D.M. & Schneewind, O. Mol. Microbiol. 24, 757–765 (1997).
Boyd, A.P., Lambermont, I. & Cornelis, G.R. J. Bacteriol. 182, 4811–4821 (2000).
Lloyd, S.A., Norman, M., Rosqvist, R. & Wolf-Watz, H. Mol. Microbiol. 39, 520–531 (2001).
Rosqvist, R., Forsberg, A., Rimpileainen, M., Bergman, T. & Wolf-Watz, H. Mol. Microbiol. 4, 657–667 (1990).
Cheng, L.W. & Schneewind, O. J. Biol. Chem. 274, 22102–22108 (1999).
Frithz-Lindsten, E., Du, Y., Rosqvist, R. & Forsberg, A. Mol. Microbiol. 25, 1125–1139 (1997).
Cornelis, G.R. et al. Microbiol. Mol. Biol. Rev. 62, 1315–1352 (1998).
Finck-Barbançon, V., Yahr, T.L. & Frank, D.W. J. Bacteriol. 180, 6224–6231 (1998).
Abe, A. et al. Mol. Microbiol. 33, 1162–1175 (1999).
Wattiau, P., Bernier, B., Deslée, P., Michiels, T. & Cornelis, G.R. Proc. Natl. Acad. Sci. USA 91, 10493–10497 (1994).
Hsia, R.C., Pannekoek, Y., Ingerowski, E. & Bavoil, P.M. Mol. Microbiol. 25, 351–359 (1997).
Kubori, T. et al. Science 280, 602–605 (1998).
Buetow, L., Flatau, G., Chiu, K., Boquet, P. & Ghosh, P. Nature Struct. Biol. 8, 584–588 (2001).
Terwilliger, T.C. & Berendzen, J. Acta Cystallogr. D 52, 749–757 (1996).
de La Fortelle, E. & Bricogne, G. Methods Enzymol. 276, 472–494 (1997).
Collaborative Computational Project, N. Acta Cystallogr. D 50, 760–763 (1994).
Perrakis, A., Morris, R. & Lamzin, V.S. Nature Struct. Biol. 6, 458–463 (1999).
Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Acta Cystallogr. A 47, 110–119 (1991).
Brünger, A.T. et al. Acta Cystallogr. D 54, 905–921 (1998).
Kraulis, P. J. Appl. Crystallogr. 24, 946–950 (1991).
Merrit, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).
Thompson, J.D., Higgins, D.G. & Gibson, T.J. Nucleic Acids Res. 22, 4673–4680 (1994).
Nicholls, A., Sharp, K. & Honig, B. Proteins 11, 281–296 (1991).
Acknowledgements
We thank J. Bliska for the generous gift of the pYV plasmid, N. Nguyen for excellent technical assistance, G. McDermott for help in MAD data collection, N. Athanasiou for his efforts on this project, M. Marino for help in data analysis and T. Chapman and J. Lawton for critical reading of the manuscript. The Advanced Light Source is supported by the U.S. Department of Energy. S.B. was supported in part by an NIH Molecular Biophysics Training Grant, and P.G. is a recipient of a W.M. Keck Foundation Distinguished Young Scholars in Medicine Award.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Birtalan, S., Ghosh, P. Structure of the Yersinia type III secretory system chaperone SycE. Nat Struct Mol Biol 8, 974–978 (2001). https://doi.org/10.1038/nsb1101-974
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nsb1101-974
This article is cited by
-
The Yersinia enterocolitica type three secretion chaperone SycO is integrated into the Yop regulatory network and binds to the Yop secretion protein YscM1
BMC Microbiology (2007)
-
The type III secretion injectisome
Nature Reviews Microbiology (2006)
-
The discovery of SycO highlights a new function for type III secretion effector chaperones
The EMBO Journal (2006)
-
Structure of Spa15, a type III secretion chaperone from Shigella flexneri with broad specificity
EMBO reports (2004)
-
Similar modes of polypeptide recognition by export chaperones in flagellar biosynthesis and type III secretion
Nature Structural & Molecular Biology (2003)