Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the Yersinia type III secretory system chaperone SycE

Abstract

In the type III secretory system of bacterial pathogens, a large number of sequence-divergent but characteristically small (14–19 kDa), acidic (pl 4–5) chaperone proteins have been identified. We present the 1.74 Å resolution crystal structure of the Yersinia pseudotuberculosis chaperone SycE, whose action in promoting translocation of YopE into host macrophages is essential to Yersinia pathogenesis. SycE, a compact, globular dimer with a novel fold, has two large hydrophobic surface patches that may form binding sites for YopE or other type III components. These patches are formed by structurally key residues that are conserved among many chaperones, suggesting shared structural and functional relationships. A negative electrostatic potential covers almost the entire surface of SycE and is likely conserved in character, but not in detail, among chaperones. The structure provides the first structural insights into possible modes of action of SycE and type III chaperones in general.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of SycE.
Figure 2: Dimer interface.
Figure 3: Sequence alignment of SycE and related chaperones.
Figure 4: Potential interaction sites.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Hueck, C.J. Microbiol. Mol. Biol. Rev. 62, 379–433 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Black, D.S. & Bliska, J.B. Mol. Microbiol. 37, 515–527 (2000).

    Article  CAS  Google Scholar 

  3. Von Pawel-Rammingen, U. et al. Mol. Microbiol. 36, 737–748 (2000).

    Article  CAS  Google Scholar 

  4. Forsberg, A. & Wolf-Watz, H. J. Bacteriol. 172, 1547–1555 (1990).

    Article  CAS  Google Scholar 

  5. Wattiau, P. & Cornelis, G.R. Mol. Microbiol. 8, 123–131 (1993).

    Article  CAS  Google Scholar 

  6. Woestyn, S., Sory, M.P., Boland, A., Lequenne, O. & Cornelis, G.R. Mol. Microbiol. 20, 1261–1271 (1996).

    Article  CAS  Google Scholar 

  7. Schesser, K., Frithz-Lindsten, E. & Wolf-Watz, H. J. Bacteriol. 178, 7227–7233 (1996).

    Article  CAS  Google Scholar 

  8. Frithz-Lindsten, E., Rosqvist, R., Johansson, L. & Forsberg, A. Mol. Microbiol. 16, 635–647 (1995).

    Article  CAS  Google Scholar 

  9. Cheng, L.W., Anderson, D.M. & Schneewind, O. Mol. Microbiol. 24, 757–765 (1997).

    Article  CAS  Google Scholar 

  10. Boyd, A.P., Lambermont, I. & Cornelis, G.R. J. Bacteriol. 182, 4811–4821 (2000).

    Article  CAS  Google Scholar 

  11. Lloyd, S.A., Norman, M., Rosqvist, R. & Wolf-Watz, H. Mol. Microbiol. 39, 520–531 (2001).

    Article  CAS  Google Scholar 

  12. Rosqvist, R., Forsberg, A., Rimpileainen, M., Bergman, T. & Wolf-Watz, H. Mol. Microbiol. 4, 657–667 (1990).

    Article  CAS  Google Scholar 

  13. Cheng, L.W. & Schneewind, O. J. Biol. Chem. 274, 22102–22108 (1999).

    Article  CAS  Google Scholar 

  14. Frithz-Lindsten, E., Du, Y., Rosqvist, R. & Forsberg, A. Mol. Microbiol. 25, 1125–1139 (1997).

    Article  CAS  Google Scholar 

  15. Cornelis, G.R. et al. Microbiol. Mol. Biol. Rev. 62, 1315–1352 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Finck-Barbançon, V., Yahr, T.L. & Frank, D.W. J. Bacteriol. 180, 6224–6231 (1998).

    PubMed  PubMed Central  Google Scholar 

  17. Abe, A. et al. Mol. Microbiol. 33, 1162–1175 (1999).

    Article  CAS  Google Scholar 

  18. Wattiau, P., Bernier, B., Deslée, P., Michiels, T. & Cornelis, G.R. Proc. Natl. Acad. Sci. USA 91, 10493–10497 (1994).

    Article  CAS  Google Scholar 

  19. Hsia, R.C., Pannekoek, Y., Ingerowski, E. & Bavoil, P.M. Mol. Microbiol. 25, 351–359 (1997).

    Article  CAS  Google Scholar 

  20. Kubori, T. et al. Science 280, 602–605 (1998).

    Article  CAS  Google Scholar 

  21. Buetow, L., Flatau, G., Chiu, K., Boquet, P. & Ghosh, P. Nature Struct. Biol. 8, 584–588 (2001).

    Article  CAS  Google Scholar 

  22. Terwilliger, T.C. & Berendzen, J. Acta Cystallogr. D 52, 749–757 (1996).

    Article  CAS  Google Scholar 

  23. de La Fortelle, E. & Bricogne, G. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  24. Collaborative Computational Project, N. Acta Cystallogr. D 50, 760–763 (1994).

  25. Perrakis, A., Morris, R. & Lamzin, V.S. Nature Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  26. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Acta Cystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  27. Brünger, A.T. et al. Acta Cystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  28. Kraulis, P. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  29. Merrit, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  Google Scholar 

  30. Thompson, J.D., Higgins, D.G. & Gibson, T.J. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  31. Nicholls, A., Sharp, K. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Bliska for the generous gift of the pYV plasmid, N. Nguyen for excellent technical assistance, G. McDermott for help in MAD data collection, N. Athanasiou for his efforts on this project, M. Marino for help in data analysis and T. Chapman and J. Lawton for critical reading of the manuscript. The Advanced Light Source is supported by the U.S. Department of Energy. S.B. was supported in part by an NIH Molecular Biophysics Training Grant, and P.G. is a recipient of a W.M. Keck Foundation Distinguished Young Scholars in Medicine Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partho Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birtalan, S., Ghosh, P. Structure of the Yersinia type III secretory system chaperone SycE. Nat Struct Mol Biol 8, 974–978 (2001). https://doi.org/10.1038/nsb1101-974

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1101-974

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing