Crystal structures of restrictocin–inhibitor complexes with implications for RNA recognition and base flipping

Abstract

The cytotoxin sarcin disrupts elongation factor binding and protein synthesis by specifically cleaving one phosphodiester bond in ribosomes. To elucidate the molecular basis of toxin action, we determined three cocrystal structures of the sarcin homolog restrictocin bound to different analogs that mimic the target sarcin/ricin loop (SRL) structure of the rat 28S rRNA. In these structures, restrictocin contacts the bulged-G motif and an unfolded form of the tetraloop of the SRL RNA. In one structure, toxin loops guide selection of the target site by contacting the base critical for recognition (G4319) and the surrounding S-shaped backbone. In another structure, base flipping of the tetraloop enables cleavage by placing the target nucleotide in the active site with the nucleophile nearly inline for attack on the scissile bond. These structures provide the first views of how a site-specific protein endonuclease recognizes and cleaves a folded RNA substrate.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structural overview.
Figure 2: Recognition of the identity element, G4319.
Figure 3: Unfolding of the tetraloop enables cleavage.
Figure 4: Implications for cleavage and recognition.

Accession codes

Accessions

Protein Data Bank

References

  1. 1

    Steyaert, J. Eur. J. Biochem. 247, 1–11 (1997).

  2. 2

    Arni, R.K. et al. Biochemistry 38, 2452–2461 (1999).

  3. 3

    Wool, I.G. In Ribonucleases structures and function (eds D'Alessio, G. & Riordan, J.F.) 131–162 (Academic Press, Inc., San Diego; 1997).

  4. 4

    Olmo, N. et al. Eur. J. Biochem. 268, 2113–2123 (2001).

  5. 5

    Yang, X. & Moffat, K. Structure 4, 837–852 (1996).

  6. 6

    Lacadena, J. et al. Proteins 37, 474–484 (1999).

  7. 7

    Kao, R. & Davies, J. J. Biol. Chem. 274, 12576–12582 (1999).

  8. 8

    Munishkin, A. & Wool, I.G. Proc. Natl. Acad. Sci. USA 94, 12280–12284 (1997).

  9. 9

    Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. Science 289, 905–920 (2000).

  10. 10

    Moore, P.B. Annu. Rev. Biochem. 68, 287–300 (1999).

  11. 11

    Correll, C.C. et al. Proc. Natl. Acad. Sci. USA 95, 13436–13441 (1998).

  12. 12

    Moazed, D., Robertson, J.M. & Noller, H.F. Nature 334, 362–364 (1988).

  13. 13

    Takeda, E., Bi, X., Yoshinari, S. & Endo, Y. Nucleic Acids Symp. 37, 131–132 (1997).

  14. 14

    Gluck, A., Endo, Y. & Wool, I.G. Nucleic Acids Res. 22, 321–324 (1994).

  15. 15

    Correll, C.C., Wool, I.G. & Munishkin, A. J. Mol. Biol. 292, 275–287 (1999).

  16. 16

    Antao, V.P., Lai, S.Y. & Tinoco, I. Nucleic Acids Res. 19, 5901–5905 (1991).

  17. 17

    Endo, Y., Gluck, A., Chan, Y.L., Tsurugi, K. & Wool, I.G. J. Biol. Chem. 265, 2216–2222 (1990).

  18. 18

    Soukup, G.A. & Breaker, R.R. RNA 5, 1308–1325 (1999).

  19. 19

    Diener, J.L. & Moore, P.B. Mol. Cell 1, 883–894 (1998).

  20. 20

    Scott, W.G., Finch, J.T. & Klug, A. Cell 81, 991–1002 (1995).

  21. 21

    Cai, Z. & Tinoco, I. Biochemistry 35, 6026–6036 (1996).

  22. 22

    Wedekind, J.E. & McKay, D.B. Nature Struct. Biol. 6, 261–268 (1999).

  23. 23

    Rupert, P.B. & Ferre-D'Amare, A.R. Nature 410, 780–786 (2001).

  24. 24

    Richards, F.M. et al. Cold Spring Harbor Symp. Quant. Biol. 36, 35–43 (1971).

  25. 25

    Li, H., Trotta, C.R. & Abelson, J. Science 280, 279–284 (1998).

  26. 26

    Weston, S.A., Tucker, A.D., Thatcher, D.R., Derbyshire, D.J. & Pauptit, R.A. J. Mol. Biol. 244, 410–422 (1994).

  27. 27

    Pingoud, A. & Jeltsch, A. Eur. J. Biochem. 246, 1–22 (1997).

  28. 28

    Roberts, R.J. & Cheng, X. Annu. Rev. Biochem. 67, 181–198 (1998).

  29. 29

    Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

  30. 30

    Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

  31. 31

    Read, R.J. Acta Crstallolgr. A 42, 140–149 (1986).

  32. 32

    Cowtan, K.D. & Zhang, K.Y. Prog. Biophys. Mol. Biol. 72, 245–270 (1999).

  33. 33

    Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard . Acta Crystallogr. A 47, 110–119 (1991).

  34. 34

    Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

  35. 35

    Carson, M. Methods Enzymol. 277, 493–505 (1991).

  36. 36

    Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

  37. 37

    Seggerson, K. & Moore, P.B. RNA 4, 1203–1215 (1998).

  38. 38

    Wimberly, B.T., Guymon, R., McCutcheon, J.P., White, S.W. & Ramakrishnan, V. Cell 97, 491–502. (1999).

Download references

Acknowledgements

We thank J. Beneken, Y. Chen, A. Glück, T. Pan, P. Rice and I. Wool for helpful discussion and the staff of BioCARS for help with data collection. A Cancer Research Foundation Young Investigator Award and grant from the NIH to C.C.C. supported this work.

Author information

Correspondence to Carl C. Correll.

Rights and permissions

Reprints and Permissions

About this article

Further reading