Abstract
The central stalk in ATP synthase, made of γ, δ and ɛ subunits in the mitochondrial enzyme, is the key rotary element in the enzyme's catalytic mechanism. The γ subunit penetrates the catalytic (αβ)3 domain and protrudes beneath it, interacting with a ring of c subunits in the membrane that drives rotation of the stalk during ATP synthesis. In other crystals of F1-ATPase, the protrusion was disordered, but with crystals of F1-ATPase inhibited with dicyclohexylcarbodiimide, the complete structure was revealed. The δ and ɛ subunits interact with a Rossmann fold in the γ subunit, forming a foot. In ATP synthase, this foot interacts with the c-ring and couples the transmembrane proton motive force to catalysis in the (αβ)3 domain.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
The δ subunit of F1Fo-ATP synthase is required for pathogenicity of Candida albicans
Nature Communications Open Access 15 October 2021
-
FliI6-FliJ molecular motor assists with unfolding in the type III secretion export apparatus
Scientific Reports Open Access 28 April 2020
-
Single-molecule pull-out manipulation of the shaft of the rotary motor F1-ATPase
Scientific Reports Open Access 15 May 2019
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






Accession codes
References
Boyer, P.D. The ATP synthase: a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 ( 1997).
Walker, J.E. ATP synthesis by rotary catalysis (Nobel Lecture). Angewandte Chemie-International Edition 37, 2309–2319 ( 1998).
Orriss, G.L. et al. The delta- and epsilon subunits of bovine F1-ATPase interact to form a heterodimeric subcomplex. Biochem. J. 314, 695–700 (1996).
Abrahams, J.P., Leslie, A.G.W., Lutter, R. & Walker, J.E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621– 628 (1994).
Boyer, P.D. The binding change mechanism for ATP synthase: some probabilities and possibilities . Biochim. Biophys. Acta 1140, 215– 250 (1993).
Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Direct observation of the rotation of F1-ATPase. Nature 386 , 299–302 (1997).
Noji, H. et al. Rotation of Escherichia coli F1-ATPase. Biochem. Biophys. Res. Comm. 260, 597– 599 (1999).
Yasuda, R., Noji, H., Kinosita, K. & Yoshida, M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120° steps. Cell 93, 1117–1124 (1998).
Karrasch, S. & Walker, J.E. Novel features in the structure of bovine ATP synthase. J. Mol. Biol. 290, 379–384 (1999).
Kato-Yamada, Y., Noji, H., Yasuda, R., Kinosita, K. & Yoshida, M. Direct observation of the rotation of ɛ subunit in F1-ATPase. J. Biol. Chem. 273, 19375–19377 (1998).
Abrahams, J.P. et al. The structure of bovine F1-ATPase complexed with the peptide antibiotic efrapeptin. Proc. Natl. Acad. Sci. USA 93, 9420–9424 (1996).
van Raaij, M., Abrahams, J.P., Leslie, A.G.W. & Walker, J.E. The structure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B. Proc. Natl. Acad. Sci. USA 93, 6913–6917 ( 1996).
Orriss, G.L., Leslie, A.G.W., Braig, K. & Walker, J.E. Bovine F1-ATPase covalently inhibited with 4-chloro-7-nitrobenzofurazan: the structure provides further support for a rotary catalytic mechanism. Structure 6, 831–837 ( 1998).
Braig, K., Menz, R.I., M.G., M., Leslie, A.G.W. & Walker, J.E. Structure of bovine mitochondrial F1-ATPase inhibited by Mg2+ ADP and aluminium fluoride. Structure 8, 567– 573 (2000).
Wilkens, S., Dahlquist, F.W., McIntosh, L.P., Donaldson, L.W. & Capaldi, R.A. Structural features of the ɛ subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy. Nature Struct. Biol. 2, 961–967 (1995).
Uhlin, U., Cox, G.B. & Guss, J.M. Crystal structure of the epsilon subunit of the proton-translocating ATP synthase from Escherichia coli. Structure 5, 1219–1230 (1997).
Walker, J.E., Runswick, M.J. & Saraste, M. Subunit equivalence in Escherichia coli and bovine heart mitochondrial F1F0-ATPases. FEBS Lett. 146, 393–396 ( 1982).
Stock, D., Leslie, A.G.W. & Walker, J.E. Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700– 1705 (1999).
Matsuno-Yagi, A. & Hatefi, Y. Inhibitory chemical modifications of F1-ATPase: effects on the kinetics of adenosine 5′-triphosphate synthesis and hydrolysis in reconstituted systems. Biochemistry 23, 3508–3514 (1984).
Satre, M., Lunardi, J., Pougeois, R. & Vignais, P.V. Inactivation of Escherichia coli BF1-ATPase by dicyclohexylcarbodiimide. Chemical modification of the β subunit. Biochemistry 18, 3134–3141 (1979).
Tommasino, M. & Capaldi, R.A. Effect of dicyclohexylcarbodiimide on unisite and multisite catalytic activities of the adenosine triphosphatase of Escherichia coli. Biochemistry 24, 3972–3976 (1985).
Holm, L. & Sander, C. Touring protein fold space with Dali/FSSP. Nucleic Acids Res. 26, 316–319 (1998).
Miki, J., Maeda, M., Mukohata, Y. & Futai, M. The γ subunit of ATP synthase from spinach-chloroplasts: primary structure deduced from the cloned cDNA sequence. FEBS Lett. 232, 221–226 (1988).
Nalin, C.M. & McCarty, R.E. Role of a disulfide bond in the γ subunit in activation of the ATPase of chloroplast coupling Factor-1. J. Biol. Chem. 259, 7275– 7280 (1984).
Hausrath, A.C., Gruber, G., Matthews, B.W. & Capaldi, R.A. Structural features of the gamma subunit of the Escherichia coli F 1-ATPase revealed by a 4.4-Å resolution map obtained by X-ray crystallography. Proc. Natl. Acad. Sci. USA 96, 13697–13702 (1999).
Walker, J.E. et al. Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. J. Mol. Biol. 184, 677–701 (1985).
Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
Richardson, J.S. The Anatomy and taxonomy of protein structures. Adv. Protein Chem. 34, 167–339 ( 1981).
Aggeler, R. & Capaldi, R.A. Nucleotide-dependent movement of the epsilon subunit between alpha and beta subunits in the Escherichia coli F1Fo-type ATPase. J. Biol. Chem. 271, 13888–13891 (1996).
Hara, K.Y. et al. The role of the DELSEED motif of the beta subunit in rotation of F1-ATPase. J. Biol. Chem. 275, 14260–14263 (2000).
Le, N.P. et al. Escherichia coli ATP synthase alpha subunit Arg-376: the catalytic site arginine does not participate in the hydrolysis/synthesis reaction but is required for promotion to the steady state. Biochemistry 39, 2778–2783 ( 2000).
Senior, A.E., Nadanaciva, S. & Weber, J. Rate acceleration of ATP hydrolysis by F1F o-ATP synthase. J. Exp. Biol. 203, 35–40 (2000).
Lutter, R. et al. Crystallisation of F1-ATPase from bovine heart mitochondria. J. Mol. Biol. 229, 787– 790 (1993).
Esch, F.S., Bohlen, P., Otsuka, A.S., Yoshida, M. & Allison, W.S. Inactivation of bovine mitochondrial F1-ATPase with dicyclohexyl-carbodiimide [14C] leads to the modification of a specific glutamic-acid residue in the beta subunit . J. Biol. Chem. 256, 9084– 9089 (1981).
Leslie, A.G.W. Joint CCP4 and EACMB Newsletter Protein Crystallography, Vol. 26 (Daresbury Laboratory, Warrington; 1992).
Collaborative Computational Project, Number 4. The CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).
Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).
Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 ( 1994).
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).
Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard . Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110– 119 (1991).
Toniolo, C. et al. Crystal structure of DCCD. Int. J. Pep. Prot. Res. 215, 77 (1988).
Laskowski, R.A., Macarthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures . J. Appl. Crystallogr. 26, 283– 291 (1993).
Jones, S. & Thornton, J.M. Prediction of protein-protein interaction sites using patch analysis. J. Mol. Biol. 272, 133–143 (1997).
Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Modell. 15, 132–134 (1997).
Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).
Schulenberg, B. & Capaldi, R.A. The epsilon subunit of the F1Fo complex of Escherichia coli: cross-linking studies show the same structure in situ as when isolated . J. Biol. Chem. 274, 28351– 28355 (1999).
Aggeler, R., Chicas-Cruz, K., Cai, S.X., Keana, J.F.W. & Capaldi, R.A. Introduction of reactive cysteine residues in the ɛ subunit of Escherichia coli F 1-ATPase, modification of these sites with tetraflorophenyl azide maleimides, and examination of changes in the binding of the epsilon subunit when different nucleotides are in catalytic sites. Biochemistry 31 , 2956–2961 (1992).
Watts, S.D., Tang, C.L. & Capaldi, R.A. The stalk region of the Escherichia coli ATP synthase: tyrosine 205 of the γ subunit is in the interface between the F1 and Fo parts and can interact with both the epsilon and c oligomer. J. Biol. Chem. 271, 28341 –28347 (1996).
Aggeler, R., Haughton, M.A. & Capaldi, R.A. Disulfide bond formation between the COOH-terminal domain of the β subunits and the γ subunits and ɛ subunits of the Escherichia coli F1-ATPase: structural implications and functional consequences. J. Biol. Chem. 270, 9185–9191 (1995).
Tang, C.L. & Capaldi, R.A. Characterization of the interface between gamma and epsilon subunits of Escherichia coli F1-ATPase. J. Biol. Chem. 271, 3018–3024 (1996).
Wilkens, S. & Capaldi, R.A. Solution structure of the epsilon subunit of the F1-ATPase from Escherichia coli and interactions of this subunit with beta subunits in the complex. J. Biol. Chem. 273, 26645–26651 (1998).
Aggeler, R., Weinreich, F. & Capaldi, R.A. Arrangement of the ɛ subunit in the Escherichia coli ATP synthase from the reactivity of cysteine residues introduced at different positions in this subunit. Biochim. Biophys. Acta 1230, 62–68 ( 1995).
Acknowledgements
We thank the staff at the SRS, Daresbury, UK, for their support during data collection, and D. Stock and J. Li for their help during CNS refinement. C.G. is supported by a Medical Research Council PhD studentship.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Gibbons, C., Montgomery, M., Leslie, A. et al. The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution. Nat Struct Mol Biol 7, 1055–1061 (2000). https://doi.org/10.1038/80981
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/80981
This article is cited by
-
The δ subunit of F1Fo-ATP synthase is required for pathogenicity of Candida albicans
Nature Communications (2021)
-
FliI6-FliJ molecular motor assists with unfolding in the type III secretion export apparatus
Scientific Reports (2020)
-
Single-molecule pull-out manipulation of the shaft of the rotary motor F1-ATPase
Scientific Reports (2019)
-
Phylogenetic Profiling of Mitochondrial Proteins and Integration Analysis of Bacterial Transcription Units Suggest Evolution of F1Fo ATP Synthase from Multiple Modules
Journal of Molecular Evolution (2017)
-
Catalytic robustness and torque generation of the F1-ATPase
Biophysical Reviews (2017)