Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution

Abstract

The central stalk in ATP synthase, made of γ, δ and ɛ subunits in the mitochondrial enzyme, is the key rotary element in the enzyme's catalytic mechanism. The γ subunit penetrates the catalytic (αβ)3 domain and protrudes beneath it, interacting with a ring of c subunits in the membrane that drives rotation of the stalk during ATP synthesis. In other crystals of F1-ATPase, the protrusion was disordered, but with crystals of F1-ATPase inhibited with dicyclohexylcarbodiimide, the complete structure was revealed. The δ and ɛ subunits interact with a Rossmann fold in the γ subunit, forming a foot. In ATP synthase, this foot interacts with the c-ring and couples the transmembrane proton motive force to catalysis in the (αβ)3 domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Space filling model of bovine F1-ATPase.
Figure 2: The structure of the central stalk.
Figure 3: Stereo view of the electron density for strands 3, 2, 1, 4 and 5 (from left to right) of the γ subunit.
Figure 4: The structures of the individual stalk subunits.
Figure 5: Interaction of γArg 75 with residues in the α and β subunits to form part of the catalytic 'catch'.
Figure 6: The DCCD binding pocket in bovine F1-ATPase.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Boyer, P.D. The ATP synthase: a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 ( 1997).

    Article  CAS  Google Scholar 

  2. Walker, J.E. ATP synthesis by rotary catalysis (Nobel Lecture). Angewandte Chemie-International Edition 37, 2309–2319 ( 1998).

    Article  Google Scholar 

  3. Orriss, G.L. et al. The delta- and epsilon subunits of bovine F1-ATPase interact to form a heterodimeric subcomplex. Biochem. J. 314, 695–700 (1996).

    Article  CAS  Google Scholar 

  4. Abrahams, J.P., Leslie, A.G.W., Lutter, R. & Walker, J.E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621– 628 (1994).

    Article  CAS  Google Scholar 

  5. Boyer, P.D. The binding change mechanism for ATP synthase: some probabilities and possibilities . Biochim. Biophys. Acta 1140, 215– 250 (1993).

    Article  CAS  Google Scholar 

  6. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Direct observation of the rotation of F1-ATPase. Nature 386 , 299–302 (1997).

    Article  CAS  Google Scholar 

  7. Noji, H. et al. Rotation of Escherichia coli F1-ATPase. Biochem. Biophys. Res. Comm. 260, 597– 599 (1999).

    Article  CAS  Google Scholar 

  8. Yasuda, R., Noji, H., Kinosita, K. & Yoshida, M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120° steps. Cell 93, 1117–1124 (1998).

    Article  CAS  Google Scholar 

  9. Karrasch, S. & Walker, J.E. Novel features in the structure of bovine ATP synthase. J. Mol. Biol. 290, 379–384 (1999).

    Article  CAS  Google Scholar 

  10. Kato-Yamada, Y., Noji, H., Yasuda, R., Kinosita, K. & Yoshida, M. Direct observation of the rotation of ɛ subunit in F1-ATPase. J. Biol. Chem. 273, 19375–19377 (1998).

    Article  CAS  Google Scholar 

  11. Abrahams, J.P. et al. The structure of bovine F1-ATPase complexed with the peptide antibiotic efrapeptin. Proc. Natl. Acad. Sci. USA 93, 9420–9424 (1996).

    Article  CAS  Google Scholar 

  12. van Raaij, M., Abrahams, J.P., Leslie, A.G.W. & Walker, J.E. The structure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B. Proc. Natl. Acad. Sci. USA 93, 6913–6917 ( 1996).

    Article  CAS  Google Scholar 

  13. Orriss, G.L., Leslie, A.G.W., Braig, K. & Walker, J.E. Bovine F1-ATPase covalently inhibited with 4-chloro-7-nitrobenzofurazan: the structure provides further support for a rotary catalytic mechanism. Structure 6, 831–837 ( 1998).

    Article  CAS  Google Scholar 

  14. Braig, K., Menz, R.I., M.G., M., Leslie, A.G.W. & Walker, J.E. Structure of bovine mitochondrial F1-ATPase inhibited by Mg2+ ADP and aluminium fluoride. Structure 8, 567– 573 (2000).

    Article  CAS  Google Scholar 

  15. Wilkens, S., Dahlquist, F.W., McIntosh, L.P., Donaldson, L.W. & Capaldi, R.A. Structural features of the ɛ subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy. Nature Struct. Biol. 2, 961–967 (1995).

    Article  CAS  Google Scholar 

  16. Uhlin, U., Cox, G.B. & Guss, J.M. Crystal structure of the epsilon subunit of the proton-translocating ATP synthase from Escherichia coli. Structure 5, 1219–1230 (1997).

    Article  CAS  Google Scholar 

  17. Walker, J.E., Runswick, M.J. & Saraste, M. Subunit equivalence in Escherichia coli and bovine heart mitochondrial F1F0-ATPases. FEBS Lett. 146, 393–396 ( 1982).

    Article  CAS  Google Scholar 

  18. Stock, D., Leslie, A.G.W. & Walker, J.E. Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700– 1705 (1999).

    Article  CAS  Google Scholar 

  19. Matsuno-Yagi, A. & Hatefi, Y. Inhibitory chemical modifications of F1-ATPase: effects on the kinetics of adenosine 5′-triphosphate synthesis and hydrolysis in reconstituted systems. Biochemistry 23, 3508–3514 (1984).

    Article  CAS  Google Scholar 

  20. Satre, M., Lunardi, J., Pougeois, R. & Vignais, P.V. Inactivation of Escherichia coli BF1-ATPase by dicyclohexylcarbodiimide. Chemical modification of the β subunit. Biochemistry 18, 3134–3141 (1979).

    Article  CAS  Google Scholar 

  21. Tommasino, M. & Capaldi, R.A. Effect of dicyclohexylcarbodiimide on unisite and multisite catalytic activities of the adenosine triphosphatase of Escherichia coli. Biochemistry 24, 3972–3976 (1985).

    Article  CAS  Google Scholar 

  22. Holm, L. & Sander, C. Touring protein fold space with Dali/FSSP. Nucleic Acids Res. 26, 316–319 (1998).

    Article  CAS  Google Scholar 

  23. Miki, J., Maeda, M., Mukohata, Y. & Futai, M. The γ subunit of ATP synthase from spinach-chloroplasts: primary structure deduced from the cloned cDNA sequence. FEBS Lett. 232, 221–226 (1988).

    Article  CAS  Google Scholar 

  24. Nalin, C.M. & McCarty, R.E. Role of a disulfide bond in the γ subunit in activation of the ATPase of chloroplast coupling Factor-1. J. Biol. Chem. 259, 7275– 7280 (1984).

    CAS  PubMed  Google Scholar 

  25. Hausrath, A.C., Gruber, G., Matthews, B.W. & Capaldi, R.A. Structural features of the gamma subunit of the Escherichia coli F 1-ATPase revealed by a 4.4-Å resolution map obtained by X-ray crystallography. Proc. Natl. Acad. Sci. USA 96, 13697–13702 (1999).

    Article  CAS  Google Scholar 

  26. Walker, J.E. et al. Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. J. Mol. Biol. 184, 677–701 (1985).

    Article  CAS  Google Scholar 

  27. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  28. Richardson, J.S. The Anatomy and taxonomy of protein structures. Adv. Protein Chem. 34, 167–339 ( 1981).

    Article  CAS  Google Scholar 

  29. Aggeler, R. & Capaldi, R.A. Nucleotide-dependent movement of the epsilon subunit between alpha and beta subunits in the Escherichia coli F1Fo-type ATPase. J. Biol. Chem. 271, 13888–13891 (1996).

    Article  CAS  Google Scholar 

  30. Hara, K.Y. et al. The role of the DELSEED motif of the beta subunit in rotation of F1-ATPase. J. Biol. Chem. 275, 14260–14263 (2000).

    Article  CAS  Google Scholar 

  31. Le, N.P. et al. Escherichia coli ATP synthase alpha subunit Arg-376: the catalytic site arginine does not participate in the hydrolysis/synthesis reaction but is required for promotion to the steady state. Biochemistry 39, 2778–2783 ( 2000).

    Article  CAS  Google Scholar 

  32. Senior, A.E., Nadanaciva, S. & Weber, J. Rate acceleration of ATP hydrolysis by F1F o-ATP synthase. J. Exp. Biol. 203, 35–40 (2000).

    CAS  PubMed  Google Scholar 

  33. Lutter, R. et al. Crystallisation of F1-ATPase from bovine heart mitochondria. J. Mol. Biol. 229, 787– 790 (1993).

    Article  CAS  Google Scholar 

  34. Esch, F.S., Bohlen, P., Otsuka, A.S., Yoshida, M. & Allison, W.S. Inactivation of bovine mitochondrial F1-ATPase with dicyclohexyl-carbodiimide [14C] leads to the modification of a specific glutamic-acid residue in the beta subunit . J. Biol. Chem. 256, 9084– 9089 (1981).

    CAS  PubMed  Google Scholar 

  35. Leslie, A.G.W. Joint CCP4 and EACMB Newsletter Protein Crystallography, Vol. 26 (Daresbury Laboratory, Warrington; 1992).

    Google Scholar 

  36. Collaborative Computational Project, Number 4. The CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  37. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  38. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 ( 1994).

    Article  Google Scholar 

  39. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  40. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard . Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110– 119 (1991).

    Article  Google Scholar 

  41. Toniolo, C. et al. Crystal structure of DCCD. Int. J. Pep. Prot. Res. 215, 77 (1988).

    Google Scholar 

  42. Laskowski, R.A., Macarthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures . J. Appl. Crystallogr. 26, 283– 291 (1993).

    Article  CAS  Google Scholar 

  43. Jones, S. & Thornton, J.M. Prediction of protein-protein interaction sites using patch analysis. J. Mol. Biol. 272, 133–143 (1997).

    Article  CAS  Google Scholar 

  44. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Modell. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  45. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  46. Schulenberg, B. & Capaldi, R.A. The epsilon subunit of the F1Fo complex of Escherichia coli: cross-linking studies show the same structure in situ as when isolated . J. Biol. Chem. 274, 28351– 28355 (1999).

    Article  CAS  Google Scholar 

  47. Aggeler, R., Chicas-Cruz, K., Cai, S.X., Keana, J.F.W. & Capaldi, R.A. Introduction of reactive cysteine residues in the ɛ subunit of Escherichia coli F 1-ATPase, modification of these sites with tetraflorophenyl azide maleimides, and examination of changes in the binding of the epsilon subunit when different nucleotides are in catalytic sites. Biochemistry 31 , 2956–2961 (1992).

    Article  CAS  Google Scholar 

  48. Watts, S.D., Tang, C.L. & Capaldi, R.A. The stalk region of the Escherichia coli ATP synthase: tyrosine 205 of the γ subunit is in the interface between the F1 and Fo parts and can interact with both the epsilon and c oligomer. J. Biol. Chem. 271, 28341 –28347 (1996).

    Article  CAS  Google Scholar 

  49. Aggeler, R., Haughton, M.A. & Capaldi, R.A. Disulfide bond formation between the COOH-terminal domain of the β subunits and the γ subunits and ɛ subunits of the Escherichia coli F1-ATPase: structural implications and functional consequences. J. Biol. Chem. 270, 9185–9191 (1995).

    Article  CAS  Google Scholar 

  50. Tang, C.L. & Capaldi, R.A. Characterization of the interface between gamma and epsilon subunits of Escherichia coli F1-ATPase. J. Biol. Chem. 271, 3018–3024 (1996).

    Article  CAS  Google Scholar 

  51. Wilkens, S. & Capaldi, R.A. Solution structure of the epsilon subunit of the F1-ATPase from Escherichia coli and interactions of this subunit with beta subunits in the complex. J. Biol. Chem. 273, 26645–26651 (1998).

    Article  CAS  Google Scholar 

  52. Aggeler, R., Weinreich, F. & Capaldi, R.A. Arrangement of the ɛ subunit in the Escherichia coli ATP synthase from the reactivity of cysteine residues introduced at different positions in this subunit. Biochim. Biophys. Acta 1230, 62–68 ( 1995).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the staff at the SRS, Daresbury, UK, for their support during data collection, and D. Stock and J. Li for their help during CNS refinement. C.G. is supported by a Medical Research Council PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew G. W. Leslie or John E. Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbons, C., Montgomery, M., Leslie, A. et al. The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution. Nat Struct Mol Biol 7, 1055–1061 (2000). https://doi.org/10.1038/80981

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80981

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing