Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MJ0109 is an enzyme that is both an inositol monophosphatase and the 'missing' archaeal fructose-1,6-bisphosphatase

Abstract

In sequenced genomes, protein coding regions with unassigned function constitute between 10 and 50% of all open reading frames. Often key enzymes cannot be identified using sequence homology searches. For example, despite the fact that methanogens have an apparently functional gluconeogenesis pathway, standard tools have been unable to identify a fructose-1,6-bisphosphatase (FBPase) gene in the sequenced Methanoccocus jannaschii genome. Using a combination of functional and structural tools, we have shown that the protein product of the M. jannaschii gene MJ0109, which had been tentatively annotated as an inositol monophosphatase (IMPase), has both IMPase and FBPase activities. Moreover, several gene products annotated as IMPases from different thermophilic organisms also possess FBPase activity. Thus, we have found the FBPase that was 'missing' in thermophiles and shown that it also functions as an IMPase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo views of the M. jannaschii IMPase.
Figure 2: Structural sequence alignments of the metallo-phosphatase family.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hwang, K. Y., Chung, J. H., Kim, S. H., Han, Y. S., & Cho, Y. Nature Struct. Biol. 6, 691–696 (1999).

    Article  CAS  Google Scholar 

  2. Stathopoulos, C. et al. Science 287, 479–482 (2000).

    Article  CAS  Google Scholar 

  3. Bult, C. J. et al. Science 273, 1058– 1073 (1996).

    Article  CAS  Google Scholar 

  4. Yu, J. P., Ladapo, J., & Whitman, W. B. J. Bacteriol. 176, 325– 332 (1994).

    Article  CAS  Google Scholar 

  5. Koga, Y., Morii, H., Akagawa-Matsushita, M. & Ohga, M. Biosci. Biotechnol. Biochem. 62, 230– 236 (1998).

    Article  CAS  Google Scholar 

  6. Martin, D. D., Ciulla, R., & Roberts, M. F. Appl. Environ. Microbiol. 65, 1815–1825 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Inada, T. & Nakamura, Y. Biochimie 77, 294–302 (1995).

    Article  CAS  Google Scholar 

  8. Matsuhisa, A., Suzuki, N., Noda, T., & Shiba, K. J. Bacteriol. 177, 200–205 (1995).

    Article  CAS  Google Scholar 

  9. Chen, L. & Roberts, M. F. Biochemistry 39, 4145–4153 (2000).

    Article  CAS  Google Scholar 

  10. Bone, R., Springer, J. P., Atack, J. R. Proc. Natl. Acad. Sci. USA 89, 10031–10035 (1992).

    Article  CAS  Google Scholar 

  11. Chen, L., & Roberts, M. F. Appl. Environ. Microbiol. 64, 2609–2615 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, L., & Roberts, M. F. Appl. Environ. Microbiol. 65, 4559–4567 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, Y., Liang, J. Y., & Lipscomb, W. N. Biochem. Biophys. Res. Commun. 190, 1080–1083 (1993).

    Article  CAS  Google Scholar 

  14. Liang, J. Y., Zhang, Y., Huang, S., & Lipscomb, W. N. Proc. Natl. Acad. Sci. USA 90, 2132–2136 (1993).

    Article  CAS  Google Scholar 

  15. York, J. D., Ponder, J. W., Chen, Z. W., Mathews, F. S., & Majerus, P. Biochemistry 33, 13164–13171 (1994)

    Article  CAS  Google Scholar 

  16. Albert, A. et al. J. Mol. Biol. 295, 927– 938 (1999).

    Article  Google Scholar 

  17. Holm, L. & Sander, C. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  18. Altschul, S. F. et al. J. Nucl. Acids Res. 25, 3389– 3402 (1997).

    Article  CAS  Google Scholar 

  19. Pearson, W.R. Meth. Enzymol. 183, 63–98 (1990).

    Article  CAS  Google Scholar 

  20. Choe, Y. Z., Poland, B. W., Fromm, H. J. & Honzatko, R. B. Biochemistry 33, 11441–11450 (1998).

    Article  Google Scholar 

  21. Bruns, C. M. SEQUOIA ver. 0.9.4 Scripps Institute 1999

    Google Scholar 

  22. Beschin, A. et al. Nature 400, 627–628 (1999).

    Article  CAS  Google Scholar 

  23. Lebioda, L. et al. Nature 401, 445–446 (1999).

    Article  CAS  Google Scholar 

  24. Yoshida, M., Oshima, T. & Imahori, K. (1973) J. Biochem. 74, 1183–1191.

    Article  CAS  Google Scholar 

  25. Romano, A. H. & Conway, T. Res. Microbiol. 147, 448–455 (1996).

    Article  CAS  Google Scholar 

  26. Bachhawat, N. & Mande. S. C. Trends Genet. 16, 111–113 (2000).

    Article  CAS  Google Scholar 

  27. Jensen, R. A. Ann. Rev. Microbiol. 30, 4099–425 (1976).

    Article  Google Scholar 

  28. Horowitz, N. H. Proc. Natl. Acad. Sci. USA 31, 153– 157 (1945).

    Article  CAS  Google Scholar 

  29. Granick, S. Ann. NY Acad. Sci. 69, 292–308 (1957).

    Article  CAS  Google Scholar 

  30. York, J. D., Ponder, J. W. & Majerus, P. W. Proc. Natl. Acad. Sci. USA 92, 5149–5153 (1995)

    Article  CAS  Google Scholar 

  31. Chen, L., Spiliotis, E. & Roberts, M. F. J. Bacteriol. 180, 3785– 3792 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Navaza, J. Acta Cryst. A50, 157–163 (1994).

    Article  CAS  Google Scholar 

  33. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Acta Cryst. D53, 240–255 (1997).

    CAS  Google Scholar 

  34. McRee, D. E. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

  35. Brünger, A. T. X-PLOR, Version 3.1 Yale University Press, New Haven ( 1992).

    Google Scholar 

  36. Sack, J. S. J. Mol. Graph. 6, 244–245 (1988).

    Article  Google Scholar 

  37. Sheldrick, G. M. & Schneider, T. R. Meth. Enzymol. 277, 319–343 ( 1997).

    Article  CAS  Google Scholar 

  38. Lu, G., Giraux, E. & Kantrowitz, E.R. J. Biol. Chem. 272, 5076– 5081 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.S. would like to acknowledge the W.M. Keck Center for Computational Biology for financial support. K.A.J. was supported by a Burroughs Wellcome Fund Hitchings-Elion fellowship. This work was also supported by the Department of Energy Biosciences Division.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Boguslaw Stec or Mary F. Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stec, B., Yang, H., Johnson, K. et al. MJ0109 is an enzyme that is both an inositol monophosphatase and the 'missing' archaeal fructose-1,6-bisphosphatase. Nat Struct Mol Biol 7, 1046–1050 (2000). https://doi.org/10.1038/80968

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80968

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing