Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Energetic contribution of tRNA hybrid state formation to translocation catalysis on the ribosome

Abstract

Upon transpeptidylation, the 3′ end of aminoacyl-tRNA (aa-tRNA) in the ribosomal A site enters the A/P hybrid state. We report that transpeptidylation of Phe-tRNA to fMetPhe-tRNA on Escherichia coli ribosomes substantially lowers the kinetic stability of the ribosome–tRNA complex and decreases the affinity by 18.9 kJ mol−1. At the same time, the free energy of activation of elongation factor G dependent translocation decreases by 12.5 kJ mol−1, indicating that part of the free energy of transpeptidylation is used to drive translocation kinetically. Thus, the formation of the A/P hybrid state constitutes an important element of the translocation mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetic stability of A site tRNA complexes.
Figure 2: Effect of spermine on fMetPhe-tRNAPhe binding to the A site.
Figure 3: Effect of Mg2+ on fMetPhe-tRNAPhe binding to the A site.
Figure 4: Stability of Phe-tRNAPhe binding to the A site.
Figure 5: Rapid kinetics of translocation.

Similar content being viewed by others

References

  1. Pape, T., Wintermeyer, W. & Rodnina, M.V. EMBO J. 17, 7490– 7497 (1998).

    Article  CAS  Google Scholar 

  2. Moazed, D. & Noller, H.F. Nature 342, 142–148 (1989).

    Article  CAS  Google Scholar 

  3. Semenkov, Y.P., Rodnina, M.V. & Wintermeyer, W. Proc. Natl. Acad. Sci. USA 93, 12183–12188 (1996).

    Article  CAS  Google Scholar 

  4. Wintermeyer, W., Lill, R. & Robertson, J.M. In The Ribosome. Structure, function, and evolution. (eds, Hill, W.E., et al.) 348– 357 (American Society for Microbiology, Washington, D.C.; 1990).

    Google Scholar 

  5. Wagner, E.G.H., Jelenc, P.C., Ehrenberg, M. & Kurland, C.G. Eur. J. Biochem. 122, 193– 197 (1982).

    Article  CAS  Google Scholar 

  6. Lill, R., Robertson, J.M. & Wintermeyer, W. Biochemistry 25, 3245– 3255 (1986).

    Article  CAS  Google Scholar 

  7. Rodnina, M.V., Savelsbergh, A., Katunin, V.I. & Wintermeyer, W. Nature 385, 37–41 ( 1997).

    Article  CAS  Google Scholar 

  8. Paulsen, H. & Wintermeyer, W. Biochemistry 25, 2749–2756 (1986).

    Article  CAS  Google Scholar 

  9. Dixon, M. & Webb, E.C. Enzymes (Academic Press, New York, San Francisco; 1979).

    Google Scholar 

  10. Moazed, D. & Noller, H.F. Cell 57 , 585–597 (1989).

    Article  CAS  Google Scholar 

  11. Green, R., Switzer, C. & Noller, H.F. Science 280, 286– 289 (1998).

    Article  CAS  Google Scholar 

  12. Kim, D.F. & Green, R. Mol. Cell 4, 859–864 (1999).

    Article  CAS  Google Scholar 

  13. Noller, H.F., Hoffrath, V. & Zimniak, L. Science 256, 1416– 1419 (1992).

    Article  CAS  Google Scholar 

  14. Samaha, R.R., Green, R. & Noller, H.F. Nature 377, 309– 314 (1995).

    Article  CAS  Google Scholar 

  15. Lill, R., Robertson, J.M. & Wintermeyer, W. EMBO J. 8, 3933– 3938 (1989).

    Article  CAS  Google Scholar 

  16. Berg, P., Bergmann, F.H., Ofengand, E.J. & Dieckmann, M. J. Biol. Chem. 236, 1726–1734 (1961).

    CAS  Google Scholar 

  17. Leahy, J., Glassman, E. & Schweet, R.S. J. Biol. Chem. 235, 3209– 3212 (1960).

    CAS  PubMed  Google Scholar 

  18. Papas, T.S. & Peterkofsky, A. Biochemistry 11, 4602–4608 (1972).

    Article  CAS  Google Scholar 

  19. Jencks, W.P. & Gilchrist, M. J. Am. Chem. Soc. 86, 4651–4654 ( 1964).

    Article  CAS  Google Scholar 

  20. Moazed, D. & Noller, H.F. J. Mol. Biol. 211, 135–145 (1990).

    Article  CAS  Google Scholar 

  21. Stark, H., et al. Cell 88, 19–28 (1997).

    Article  CAS  Google Scholar 

  22. Stark, H., et al. Nature 389, 403–406 (1997).

    Article  CAS  Google Scholar 

  23. Schilling-Bartetzko, S., Franceschi, F., Sternback, H. & Nierhaus, K.H. J. Biol. Chem. 267, 4693– 4702 (1992).

    CAS  PubMed  Google Scholar 

  24. Kirillov, S.V. & Semenkov, Y.P. FEBS Lett. 148, 235–238 ( 1982).

    Article  CAS  Google Scholar 

  25. Rodnina, M.V., et al. Proc. Natl. Acad. Sci. USA 96, 9586 –9590 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Gualerzi for strains overproducing initiation factors, V. Makhno for purified tRNAs, and P. Striebeck and S. Möbitz for expert technical assistance. The work was supported by the Deutsche Forschungsgemeinschaft, the Volkswagen-Stiftung, the European Union, the Alfried Krupp von Bohlen und Halbach-Stiftung, and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wintermeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semenkov, Y., Rodnina, M. & Wintermeyer, W. Energetic contribution of tRNA hybrid state formation to translocation catalysis on the ribosome. Nat Struct Mol Biol 7, 1027–1031 (2000). https://doi.org/10.1038/80938

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80938

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing