Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selection of gp41-mediated HIV-1 cell entry inhibitors from biased combinatorial libraries of non-natural binding elements

Abstract

The trimeric, α-helical coiled-coil core of the HIV-1 gp41 ectodomain is thought to be part of a transient, receptor-triggered intermediate in the refolding of the envelope glycoprotein into a fusion-active conformation. In an effort to discover small organic inhibitors that block gp41 activation, we have generated a biased combinatorial chemical library of non-natural binding elements targeted to the gp41 core. From this library of 61,275 potential ligands, we have identified elements that, when covalently attached to a peptide derived from the gp41 outer-layer α-helix, contribute to the formation of a stable complex with the inner core and to inhibition of gp41-mediated cell fusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo view of contacts near the N-terminus of the outer helix of gp41.
Figure 2: A structure-based combinatorial approach to identifiy inhibitiors of gp41-mediated viral entry.
Figure 3: Optimization of an on-bead affinity-based assay for the determination of a biasing peptide sequence.
Figure 4: Building blocks used to construct the library.
Figure 5: Results of deconvoluting the library of non-peptide elements biased to interact with the gp41 inner core.
Figure 6: In vitro refolding of gp41 inner core–outer helix complexes.
Figure 7: Inhibition of gp41-mediated cell-cell fusion by outer helix peptides and peptide-hybrids.

Similar content being viewed by others

References

  1. Dimitrov, D.S. How do viruses enter cells? The HIV coreceptors teach us a lesson of complexity. Cell 91, 721–730 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Sattentau, Q.J. & Moore, J.P. Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding. J. Exp. Med. 174, 407–415 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Sattentau, Q.J. & Moore, J.P. Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding. J. Virol. 67, 7383–7393 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Trkola, A. et al. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 384, 184 –187 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Wu, L. et al. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 384, 179–183 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Littman, D.R. Chemokine receptors: Keys to AIDS pathogenesis? Cell 93, 677–680 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Sullivan, N., et al. CD4-induced conformational changes in the human immunodeficiency virus type 1 gp120 glycoprotein: consequences for virus entry and neutralization. J. Virol. 72, 4694–4703 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chan, D.C., Fass, D., Berger, J.M. & Kim, P.S. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–273 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Weissenhorn, W., Dessen, A., Harrison, S.C., Skehel, J.J. & Wiley, D.C. Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426– 430 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Tan, K., Liu, J.-H., Wang, J.-H., Shen, S. & Lu, M. Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc. Natl. Acad. Sci. USA 94, 12303–12308 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bullough, P.A., Hughson, F.M., Skehel, J.J. & Wiley, D.C. Structure of influenza haemaglutinin at the pH of membrane fusion. Nature 371, 37–43 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  12. Joshi, S.B., Dutch, R.E. & Lamb, R.A. A core trimer of the paramyxovirus fusion protein: parallels to influenza virus hemagglutinin and HIV-1 gp41. Virology 248, 20–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Dutch, R.E., Leser, G.P. & Lamb, R.A. Paramyxovirus fusion protein: characterization of the core trimer, a rod-shaped complex with helices in anti-parallel orientation. Virology 254, 147–159 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Baker, K.A., Dutch, R.E., Lamb, R.A. & Jardetzky, T.S. Structural basis for paramyxovirus-mediated membrane fusion. Mol. Cell 3, 309–319 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Weissenhorn, W., Carfí, A., Lee, K.-H., Skehel, J.J. & Wiley, D.C. Crystal structure of the Ebola virus membrane fusion, GP2, from the envelope glycoprotein ectodomain. Mol. Cell 2, 605–616 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  16. Malashkevich, V.N., et al. Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9A resolution. Proc. Natl. Acad. Sci. USA 96, 2662–2667 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fass, D., Harrison, S.C. & Kim, P.S. Retrovirus envelope domain at 1.7 angstrom resolution. Nature Struct. Biol. 3, 465– 469 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Center, R.J., et al. Crystallization of a trimeric human T cell leukemia virus type 1 gp21 ectodomain fragment as a chimera with maltose-binding protein. Protein Sci. 7, 1612–1619 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kobe, B., Center, R.J., Kemp, B.E. & Poumbourios, P. Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins. Proc. Natl. Acad. Sci. USA 96, 4319– 4324 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Caffrey, M., et al. Three-dimensional solution structure of the 44kDa ectodomain of SIV gp41. EMBO J. 17, 4572– 4584 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Malashkevich, V.N., Chan, D.C., Chutkowski, C.T. & Kim, P.S. Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad inhibitory activity of gp41 peptides. Proc. Natl. Acad. Sci. USA 95, 9134– 9139 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Skehel, J.J. & Wiley, D.C. Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95, 871–874 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Hughson, F.M. Enveloped viruses: A common mode of membrane fusion? Current Biology 7, 565–569 ( 1997).

    Article  Google Scholar 

  24. Daniels, R.S. et al. Fusion mutants of influenza virus hemagglutinin glycoprotein. Cell 40, 431–439 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Bodian, D.L. et al. Inhibition of the fusion-inducing conformational change of influenza hemagglutinin by benzoquinones and hydroquinones. Biochemistry 32, 2967–2978 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  26. Hoffman, L.R., Kuntz, I.D. & White, J.M. Structure-based identification of an inducer of low-pH conformational change in influenza virus hemagglutinin: irreversible inhibition of infectivity. J. Virol. 71, 8808– 8820 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wild, C., Oas, T., McDanal, C., Bolognesi, D. & Matthews, T. A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc. Natl. Acad. Sci. USA 89, 10537– 10541 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wild, C.T., Shugars, D.C., Greenwell, T.K., McDanal, C.B. & Matthews, T.J. Peptides corresponding to a predictive α-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc. Natl. Acad. Sci. USA 91, 9770–9774 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gallaher, W.R., Ball, J.M., Garry, R.F., Griffin, M.C. & Montelaro, R.C. A general model for the transmembrane proteins of HIV and other retroviruses. AIDS Res. Human Retroviruses 5, 431–440 (1989).

    Article  CAS  Google Scholar 

  30. Kilby, J.M. et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nature Med. 4, 1302–1307 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Dubay, J.W., Roberts, S.J., Brody, B. & Hunter, E. Mutations in the leucine zipper of the human immunodeficiency virus type 1 transmembrane glycoprotein affect fusion and infectivity. J. Virol. 66, 4748–4756 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Weng, Y. & Weiss, C.D. Mutational analysis of residues in the coiled-coil domain of human immunodeficiency virus type 1 transmembrane protein gp41. J. Virol. 72, 9676– 9682 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chan, D.C., Chutkoski, C.T. & Kim, P.S. Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target. Proc. Natl. Acad. Sci. USA 95, 15613–15617 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Combs, A.P., et al. Protein structure-based combinatorial chemistry: discovery of non-peptide binding elements to Src SH3 domain. J. Am. Chem. Soc. 118, 287–288 ( 1996).

    Article  CAS  Google Scholar 

  35. Feng, S., Kapoor, T.M., Shirai, F., Combs, A.P. & Schreiber, S.L. Molecular basis for the binding of SH3 ligands with non-peptide elements by combinatorial synthesis. Chem. Biol. 3, 661–670 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Lam, K.S., Lebl, M. & Krchnák, V. The one bead-one-compound combinational library method. Chem. Rev. 97, 411–448 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Erb. E., Janda, K.D. & Brenner, S. Recursive deconvolution of combinational chemical libraries. Proc. Natl. Acad. Sci. USA 91, 11422– 11426 (1997).

    Article  Google Scholar 

  38. Lu, M., Blacklow, S.C. & Kim, P.S. A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nature Struct. Biol. 2, 1075 –1082 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Lawless, M.K. et al. HIV-1 membrane fusion mechanism: structural studies of the interactions between biologically-active peptides from gp41. Biochemistry 35, 13697–13708 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  40. Muñoz-Barroso, I., Durell, S., Sakaguchi, K., Appella, E. & Blumenthal, R. Dilation of the human immunodeficiency virus-1 envelope glycoprotein fusion pore revealed by the inhibitory action of a synthetic peptide from gp41. J. Cell Biol. 140 , 315–323 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Furuta, R.A., Wild, C.T., Weng, Y. & Weiss, C.D. Capture of an early fusion-active conformation of HIV-1 gp41. Nature Struc. Biol. 5, 276–279 ( 1998).

    Article  CAS  Google Scholar 

  42. Blacklow, S.C., Lu, M. & Kim, P.S. A trimeric subdomain of the simian immunodeficiency virus envelope glycoprotein. Biochemistry 34, 14955– 14962 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Weissenhorn, W., et al. Assembly of a rod-shaped chimera of a trimeric GCN4 zipper and the HIV-1 gp41 ectodomain expressed in Escherichia coli. Proc. Natl. Acad. Sci. USA 94, 6065–6069 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Rimsky, L.T., Shugars, D.C. & Matthews, T.J. Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides. J. Virol. 72, 986–993 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Franke, R.R., Sakmar, T.P., Oprian, D.D. & Khorana, H.G. A single amino acid substitution in rhodopsin (lysine 248-leucine) prevents activation of transducin. J. Biol. Chem. 263, 2119–2122 (1988).

    CAS  PubMed  Google Scholar 

  46. Nussbaum, O., Broder, C.C. & Berger, E.A. Fusogenic mechanisms of enveloped-virus glycoproteins analyzed by a novel recombinant vaccinia virus-based assay quantitating cell fusion-dependent reporter gene activation. J. Virol. 68, 5411–5422 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Carson, M. & Bugg, C.E. Algorithm for ribbon models of proteins. J. Mol. Graph. 4, 121– 122 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Sinitskaya for technical assistance. M.F. acknowledges a fellowship from the Ministry of Education (Spain). The work was supported by NIH grants to D.O., D.C.W., and S.C.H. S.L.S., D.C.W., and S.C.H. are Investigators in the HHMI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrer, M., Kapoor, T., Strassmaier, T. et al. Selection of gp41-mediated HIV-1 cell entry inhibitors from biased combinatorial libraries of non-natural binding elements. Nat Struct Mol Biol 6, 953–960 (1999). https://doi.org/10.1038/13324

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13324

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing