Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the collagen-binding domain from a Staphylococcus aureus adhesin

Abstract

The crystal structure of the recombinant 19,000 Mr binding domain from the Staphylococcus aureus collagen adhesin has been determined at 2 Å resolution. The domain fold is a jelly-roll, composed of two antiparallel β-sheets and two short α-helices. Triple-helical collagen model probes were used in a systematic docking search to identify the collagen-binding site. A groove on β-sheet I exhibited the best surface complementarity to the collagen probes. This site partially overlaps with the peptide sequence previously shown to be critical for collagen binding. Recombinant proteins containing single amino acid mutations designed to disrupt the surface of the putative binding site exhibited significantly lower affinities for collagen. Here we present a structural perspective for the mode of collagen binding by a bacterial surface protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hay, E.D., Cell Biology of Extracellular Matrix, 2nd ed. (Plenum Press, New York; 1991).

    Book  Google Scholar 

  2. Rubin, K., Höök, M., Öbrink, B. & Timpl, R. Substrate adhesion of rat hepatocytes: mechanism of attachment to collagen substrates. Cell 24, 463–470 (1981).

    Article  CAS  Google Scholar 

  3. Vandenberg, P. et al. Characterization of a type IV collagen major cell binding site with affinity to the α1β1 and the α2β1 integrins. J. Cell Biol. 113, 1475–1483 (1991).

    Article  CAS  Google Scholar 

  4. Sasaki, T. et al. Limited cleavage of extracellular matrix protein BM-40 by matrix metalloproteinases increases its affinity for collagens. J. Biol. Chem. 272, 9237–9243 (1997).

    Article  CAS  Google Scholar 

  5. Speziale, P. et al. Binding of collagen to Staphylococcus aureus Cowan 1. J. Bacteriol. 167, 77–81 (1986).

    Article  CAS  Google Scholar 

  6. Switalski, L.M. et al. A collagen receptor on Staphylococcus aureus strains isolated from patients with septic arthritis mediates adhesion to cartilage. Mol. Microbiol. 7, 99–107 (1993).

    Article  CAS  Google Scholar 

  7. Patti, J.M. et al. Molecular characterization and expression of a gene encoding a Staphylococcus aureus collagen adhesin. J. Biol.Chem. 267, 4766–4772 (1992).

    CAS  PubMed  Google Scholar 

  8. Patti, J.M., Boles, J.O. & Höök, M. Identification and biochemical characterization of the ligand binding domain of the collagen adhesin from Staphylococcus aureus. Biochemistry 32, 11428–11435 (1993).

    Article  CAS  Google Scholar 

  9. Patti, J.M. et al. Critical residues in the ligand-binding Site of the Staphylococcus aureus collagen-binding adhesin (MSCRAMM). J. Biol. Chem. 270, 12005–12011 (1995).

    Article  CAS  Google Scholar 

  10. Laskowski, R.A. et al. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  11. Richardson, J.S. The anatomy and taxonomy of protein structure. Advances in Protein Chemistry 34, 167–339 (1981).

    Article  CAS  Google Scholar 

  12. Connolly, M.L. The molecular surface package. J. Mol. Graphics 11, 139–141 (1993).

    Article  CAS  Google Scholar 

  13. Bella, J. et al. Crystal and molecular structure of a collagen-like peptide at 1.9 Å Resolution. Science 266, 75–81 (1994).

    Article  CAS  Google Scholar 

  14. Sakakibara, S. et al. Synthesis of (Pro-Hyp-Gly)n of defined molecular weights. Evidence for the stabilization of collagen triple helix by hydroxypyroline. Biochim. Biophys. Acta 303, 198–202 (1973).

    Article  CAS  Google Scholar 

  15. Heidemann, E. & Roth, W. Synthesis and investigation of collagen model peptides. Adv. Polym. Sci. 43, 143–203 (1982).

    Article  CAS  Google Scholar 

  16. Segal, D.M. & Traub, W. Polymers of tripeptides as collagen models. VI. synthesis and structural investigation of poly(L-alanyl-L-prolyl-glycine). J. Mol. Biol. 43, 487–496 (1969).

    Article  CAS  Google Scholar 

  17. Brünger, A.T. X-PLOR manual, version 3.1 (Yale Univ. Press, New Haven, Connecticut, USA; 1992).

    Google Scholar 

  18. House-Pompeo, K., Boles, J.O. & Höök, M. Characterization of bacterial adhesin interactions with extracellular matrix components utilizing biosensor technology. METHODS: A Companion to Meth. Enz. 6, 134–142 (1994).

    Article  CAS  Google Scholar 

  19. Nemethy, G. et al. Energy parameters in polypeptides. 10. improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides. J. Phys. Chem. 96, 6472–6484 (1992).

    Article  CAS  Google Scholar 

  20. Chen, J.M. et al. An energetic evaluation of a “Smith” collagen microfibril model. J. Protein Chem. 10, 535–542 (1991).

    Article  CAS  Google Scholar 

  21. Jiang, F. & Kirn, S.-H. “Soft Docking”: matching of molecular surface cubes. J. Mol. Biol. 219, 79–102 (1991).

    Article  CAS  Google Scholar 

  22. Ho, S.N. et al. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Symersky, J., Patti, J., Carson, M. et al. Structure of the collagen-binding domain from a Staphylococcus aureus adhesin. Nat Struct Mol Biol 4, 833–838 (1997). https://doi.org/10.1038/nsb1097-833

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1097-833

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing