Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arginine substitutions in the hinge region of antichymotrypsin affect serpin β-sheet rearrangement

Abstract

A hallmark of serpin function is the massive β-sheet rearrangement involving the insertion of the cleaved reactive loop into β-sheet A as strand s4A. This structural transition is required for inhibitory activity. Small hydrophobic residues at P14 and P12 positions of the reactive loop facilitate this transition, since these residues must pack in the hydrophobic core of the cleaved serpin. Despite the radical substitution of arginine at the P12 position, the crystal structure of cleaved A347R antichymotrypsin reveals full strand s4A insertion with normal β-sheet A geometry; the R347 side chain is buried in the hydrophobic protein core. In contrast, the structure of cleaved P14 T345R antichymotrypsin reveals substantial yet incomplete strand s4A insertion, without burial of the R345 side chain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gettins, P., Patston, P.A. & Schapira, M. Structure and mechanism of action of serpins. Hemat./Oncol. Clin of North America 6, 1393–1408 (1992).

    Article  CAS  Google Scholar 

  2. Potempa, J., Korzuss, E. & Travis, J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J. Biol. Chem. 269, 15957–15960 (1994).

    CAS  Google Scholar 

  3. Schulze, A.J., Huber, R., Bode, W. & Engh, R.A. Structural aspects of serpin inhibition. FEBS Lett. 344, 117–124 (1994).

    Article  CAS  Google Scholar 

  4. Travis, J. & Salvesen, G.S. Human plasma proteinase inhibitors. Ann. Rev. Biochem. 52, 655–709 (1983).

    Article  CAS  Google Scholar 

  5. Remold-O'Donnell, E. The ovalbumin family of serpin proteins. FEBS Lett. 315, 105–108 (1993).

    Article  CAS  Google Scholar 

  6. Doolittle, R.F. Angiotensinogen is related to the antitrypsin-antithrombin-ovalbumin family. Science 222, 417–419 (1983).

    Article  CAS  Google Scholar 

  7. Pemberton, P.A, Stein, P.E., Pepys, M.B., Potter, J.M. & Carrell, R.W. Hormone binding globulins undergo serpin conformational change in inflammation. Nature 336, 257–258 (1988).

    Article  CAS  Google Scholar 

  8. Hirayoshi, K. et al. HSP47: a tissue-specific, transformation-sensitive, collagen-binding heat shock protein of chicken embryo fibroblasts. Mol. Cell. Biol. 11, 4036–4044 (1991).

    Article  CAS  Google Scholar 

  9. Löbermann, H., Tokuoka, R., Deisenhofer, J. & Huber, R. Human α1-Proteinase inhibitor: crystal structure analysis of two crystal modifications, molecular model, and preliminary analysis of the implications for function. J. Mol. Biol. 177, 531–556 (1984).

    Article  Google Scholar 

  10. Schecter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Comm. 27, 157–162 (1967).

    Article  Google Scholar 

  11. Baumann, U., Huber, R., Bode, W., Grosse, D., Lesjak, M. & Laurell, C.B. Crystal structure of cleaved human α1-antichymotrypsin at 2.7 Å resolution and its comparison with other serpins. J. Mol. Biol. 218, 595–606 (1991).

    Article  CAS  Google Scholar 

  12. Baumann, U., Bode, W., Huber, R., Travis, J. & Potempa, J. Crystal structure of cleaved equine leucocyte elastase inhibitor determined at 1.95 Å resolution. J. Mol. Biol. 226, 1207–1218 (1992).

    Article  CAS  Google Scholar 

  13. Mourey, L., Samama, J.-P., Delarue, M., Petitou, M., Choay, J. & Moras, D. Crystal structure of cleaved bovine antithrombin III at 3.2 Å resolution. J. Mol. Biol. 232, 223–241. (1993).

    Article  CAS  Google Scholar 

  14. Bruch, M., Weiss, V. & Engel, J. Plasma serine proteinase inhibitors (serpins) exhibit major conformational changes and a large increase in conformational stability upon cleavage at their reactive sites. J. Biol. Chem. 263, 16626–16630 (1988).

    CAS  Google Scholar 

  15. Gettins, P. & Harten, B. Properties of throbin- and elastase-modified human antithrombin III. Biochemistry 27, 3634–3639 (1988).

    Article  CAS  Google Scholar 

  16. Carrell, R.W. & Owen, M.C. Plakalbumin, α1-antitrypsin, antithrombin, and the mechanism of inflammatory thrombosis. Nature 317, 730–732 (1985).

    Article  CAS  Google Scholar 

  17. Perkins, S.J. et al. Secondary structure changes stabilize the reactive-centre cleaved form of SERPINs. A study by 1H nuclear magnetic resonance and Fourier transform infrared spectroscopy. J. Mol. Biol. 228, 1235–1254 (1992).

    Article  CAS  Google Scholar 

  18. Wei, A., Rubin, H., Cooperman, B.S. & Christianson, D.W. Crystal structure of an uncleaved serpin reveals the conformation of an inhibitory reactive loop. Nature Struct. Biol. 1, 251–258 (1994).

    Article  CAS  Google Scholar 

  19. Carrell, R.W., Evans, D.L. & Stein, P.E. Mobile reactive centre of serpins and the control of thrombosis. Nature 353, 576–578 (1991).

    Article  CAS  Google Scholar 

  20. Schulze, A.J. et al. Structural transition of α1-antitrypsin by a peptide sequentially similar to β-Strand s4A. Eur. J. Biochem. 194, 51–56 (1990).

    Article  CAS  Google Scholar 

  21. Hood, D.B., Huntington, J.A. & Gettins, P.G.W. & Gettins, P.G.W. α1-Proteinase inhibitor variant T345R. Influence of P14 residue on substrate and inhibitory pathways. Biochemistry 33, 8538–8547 (1994).

    Article  CAS  Google Scholar 

  22. Hopkins, P.C.R. & Stone, S.R. The contribution of conserved hinge region residues of α1-antitrypsin to its reaction with elastase. Biochemistry 34, 15872–15879 (1995).

    Article  CAS  Google Scholar 

  23. Lawrence, D.A., Olson, S.T., Palaniappan, S. & Ginsburg, D. Serpin reactive center loop mobility is required for inhibitor function but not for enzyme recognition. J. Biol. Chem. 269, 27657–27662 (1994).

    CAS  Google Scholar 

  24. Tucker, H.M., Mottonen, J., Goldsmith, E.J. & Gerard, R.D. Engineering of plasminogen activator inhibitor-1 to reduce the rate of latency transition. Nature Struct. Biol. 2, 442–445 (1995).

    Article  CAS  Google Scholar 

  25. Katz, D.S., Wei, A., Zhong, Q., Rubin, H., Cooperman, B.S. & Christianson, D.W. Crystallization and atomic resolution X-ray diffraction analysis of antichymotrypsin variants. Biochem. Biophys. Res. Comm. 196, 752–757 (1993).

    Article  CAS  Google Scholar 

  26. Gils, A., Knockaert, I. & Declerck, P.J. Substrate behavior of plasminogen activator inhibitor-1 is not associated with a lack of insertion of the reactive site loop. Biochemistry 35, 7474–7481 (1996).

    Article  CAS  Google Scholar 

  27. Aertgeerts, K., De Bondt, H.L., De Ranter, C.J. & Declerck, P.J. Mechanisms contributing to the conformational and functional flexibility of plasminogen activator inhibitor-1. Nature Struct. Biol. 2, 891–897 (1995).

    Article  CAS  Google Scholar 

  28. Audenaert, A.-M., Knockaert, I., Collen, D. & Declerck, P.J. Conversion of plasminogen activator inhibitor-1 from inhibitor to substrate by point mutations in the reactive site loop. J. Biol. Chem. 269, 19559–19564 (1994).

    CAS  PubMed  Google Scholar 

  29. Carrell, R.W. & Stein, P.E. The biostructural pathology of the serpins: critical function of sheet opening mechanism. Biol. Chem. Hoppe-Seyler 377, 1–17 (1996).

    Article  CAS  Google Scholar 

  30. Sancho, E., Declerck, P.J., Price, N.C., Kelly, S.M. & Booth, N.A. Conformational studies on plasminogen activator inhibitor (PAI-1) in active, latent, substrate, and cleaved forms. Biochemistry 34, 1064–1069 (1995).

    Article  CAS  Google Scholar 

  31. Wright, H.T. & Blajchman, M.A. Proteolytically cleaved mutant antithrombin-Hamilton has high stability to denaturation characteristic of wild type inhibitor serpin. FEBS Lett. 348, 14–16 (1994).

    Article  CAS  Google Scholar 

  32. Gettins, P., Patston, P. & Schapira, M. The role of conformational change in serpin structure and function. BioEssays 15, 461–467 (1993).

    Article  CAS  Google Scholar 

  33. Wright, H.T. & Scarsdale, J.N. Structural basis for serpin inhibitor activity. Proteins: Struct., Funct., Gen. 22, 210–225 (1995).

    Article  CAS  Google Scholar 

  34. Stites, W.E., Gittis, A.G., Lattman, E.E. & Shortle, D. In a staphylococcal nuclease mutant the side-chain of a lysine replacing valine 66 is fully buried in the hydrophobic core. J. Mol. Biol. 221, 7–14 (1991).

    Article  CAS  Google Scholar 

  35. Dao-pin, S., Anderson, D.E., Baase, W.A., Dahlquist, F.W. & Matthews, B.W. Structural and thermodynamic consequences of burying a charged residue within the hydrophobic core of T4 lysozyme. Biochemistry 30, 115221–111529 (1991).

    Article  Google Scholar 

  36. Wright, H.T., Qian, H.X. & Huber, R. Crystal structure of plakalbumin, a proteolytically nicked form of ovalbumin. Its relationship to the structure of cleaved α1-proteinase inhibitor. J. Mol. Biol. 213, 513–528 (1990).

    Article  CAS  Google Scholar 

  37. Stein, P.E., Tewkesbury, D.A. & Carrell, R.W. Ovalbumin and angiotensinogen lack serpin S→R conformational change. Biochem. J. 262, 103–107 (1989).

    Article  CAS  Google Scholar 

  38. Schulze, A.J., Huber, R., Degryse, E., Speck, D. & Bischoff, R. Inhibitory activity and conformational transition of α1-proteinase inhibitor variants. Eur. J. Biochem. 202, 1147–1155 (1991).

    Article  CAS  Google Scholar 

  39. Skriver, K. et al. Substrate properties of C1 inhibitor Ma (Alanine 434→GIutamic Acid). Genetic and structural evidence suggesting that the P12-region contains critical determinants of serine protease inhibitor inhibitor/substrate status. J. Biol. Chem. 266, 9216–9221 (1991).

    CAS  Google Scholar 

  40. Davis, A.E. et al. C1 inhibitor hinge region mutations produce dysfunction by different mechanisms. Nature Genetics 1, 354–358 (1992).

    Article  CAS  Google Scholar 

  41. Lawrence, D.A. et al. Serpin-protease complexes are trapped as stable acyl-enzyme intermediates. J. Biol. Chem. 270, 25309–25312 (1995).

    Article  CAS  Google Scholar 

  42. Lee, N.K., Park, S.D. & Yu, M.-H. Probing the native strain in α1-antitrypsin. Nature Struct. Biol. 3, 497–500 (1996).

    Article  CAS  Google Scholar 

  43. Ireland, H. et al. Antithrombin Glasgow II: alanine 382 to threonine mutation in the serpin P12 position, resulting in a substrate reaction with thrombin. Brit. J. Haem. 79, 70–74 (1991).

    Article  CAS  Google Scholar 

  44. Hopkins, P.C.R., Carrell, R.W. & Stone, S.R. Effects of mutations in the hinge region of serpins. Biochemistry 32, 7650–7657 (1993).

    Article  CAS  Google Scholar 

  45. Song, H.K., Lee, K.N., Kwon, K.-S., Yu, M.-H. & Suh, S.W. Crystal structure of an uncleaved α1-antitrypsin reveals the conformation of its inhibitory reactive loop. FEBS Letters 377, 150–154 (1995).

    Article  CAS  Google Scholar 

  46. Wilczynska, M., Fa, M., Ohlsson, P.-I. & Ny, T. The inhibition mechanism of serpins. J. Biol. Chem. 270, 29652–29655 (1995).

    Article  CAS  Google Scholar 

  47. Carrell, R.W., Stein, P.E., Fermi, G. & Wardell, M.R. Biological implications of a 3 Å structure of dimeric antithrombin. Structure 2, 257–270 (1994).

    Article  CAS  Google Scholar 

  48. Schreuder, H.A. et al. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nature Struct. Biol. 1, 48–54 (1994).

    Article  CAS  Google Scholar 

  49. Stein, P.E. & Carrell, R.W. What do dysfunctional serpins tell us about molecular mobility and disease? Nature Struct. Biol. 2, 96–113 (1995).

    Article  CAS  Google Scholar 

  50. Plotnick, M.I., Mayne, L., Schechter, N.M. & Rubin, H. Distortion of the active site of chymotrypsin complexed with a serpin. Biochemistry 35, 7586–7590 (1996).

    Article  CAS  Google Scholar 

  51. Stavridi, E.S. et al. Structural change in α-chymotrypsin induced by complexation with α1-antichymotrypsin as seen by enhanced sensitivity to proteolysis. Biochemistry 35, 10608–10615 (1996).

    Article  CAS  Google Scholar 

  52. Dixon, M.M. & Matthews, B.W. Is γ-chymotrypsin a tetrapeptide acyl-enzyme adduct of α-chymotrypsin? Biochemistry 28, 7033–7038 (1989).

    Article  CAS  Google Scholar 

  53. Rubin, H. et al. Cloning, expression, purification, and biological activity of recombinant native and variant α1-antichymotrypsin. J. Biol. Chem. 265, 1199–1207 (1990).

    CAS  PubMed  Google Scholar 

  54. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 24, 795–800 (1993).

    Article  Google Scholar 

  55. Leslie, A.G.W. Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography, 26, Warrington, Daresbury Laboratory (1992).

    Google Scholar 

  56. Collaborative Computing Project, No.4. The CCP4 Suite: Programs for protein crystallography. Acta Cryst. D50, 760–763 (1994).

  57. Navaza, J. AMoRe: An automated package for molecular replacement. Acta Cryst. A50, 157–163 (1994).

    Article  Google Scholar 

  58. Brünger, A.T. Free R value: A novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  59. Sack, J.S. CHAIN: A crystallographic modeling program. J. Mol Graphics 6, 224–225 (1988).

    Article  Google Scholar 

  60. Brünger, A.T. X-PLOR (v.3.1)- A system for X-ray crystallography and NMR, New Haven, CT., Yale University Press (1992).

  61. Brünger, A.T., Krukowski, A. & Erickson, J.W. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta. Cryst. A46, 585–593 (1990).

    Article  Google Scholar 

  62. Rubin, H. et al. Conversion of α1-Antichymotrypsin into a human neutrophil elastase inhibitor: demonstration of variants with different association rate constants, stoichiometries of inhibition, and complex stabilities. Biochemistry 33, 7627–7633 (1994).

    Article  CAS  Google Scholar 

  63. Jones, T.A., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  64. Jones, T.A. & Kjeldgaard, M. O - the Manual (version 5.10), Uppsala (1995).

    Google Scholar 

  65. Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukacs, C., Zhong, J., Plotnick, M. et al. Arginine substitutions in the hinge region of antichymotrypsin affect serpin β-sheet rearrangement. Nat Struct Mol Biol 3, 888–893 (1996). https://doi.org/10.1038/nsb1096-888

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1096-888

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing