Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Localized perturbations in CheY structure monitored by NMR identify a CheA binding interface

Abstract

Phosphotransfer between the autophosphorylating histidine kinase CheA and the response regulator CheY represents a crucial step in the bacterial chemotaxis signal transduction pathway. The 15N–1H correlation spectrum of CheY complexed with an amino-terminal fragment of CheA exhibits specific localized differences in chemical shifts when compared to the spectrum of uncompiexed CheY. When mapped onto the three-dimensional structure of CheY, these changes define a region distinct from the active site. A single amino-acid substitution within this binding region on CheY, alanine to valine at position 103, significantly decreases the affinity of CheY for CheA. The binding face described by these changes partially overlaps a flagellar switch binding surface previously defined by mutagenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Stock, J.B., Surette, M.G., McCleary, W.R. & Stock, A.M. Signal transduction in bacterial chemotaxis. J. biol. Chem. 267, 19753–19756 (1992).

    CAS  PubMed  Google Scholar 

  2. Bourret, R.B., Borkovich, K.A. & Simon, M.I. Signal transduction pathways involving protein phosphorylation in prokaryotes. A. Rev. Biochem. 60, 401–441 (1991).

    Article  CAS  Google Scholar 

  3. Alex, L.A. & Simon, M.I. Protein histidine kinases and signal transduction in prokaryotes and eukaryotes. Trends Genet. 10, 133–138 (1994).

    Article  CAS  Google Scholar 

  4. Stock, J.B., Ninfa, A.J. & Stock, A.M. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53, 450–490 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Parkinson, J.S. & Kofoid, E.C. Communication modules in bacterial signaling proteins. A. Rev. Genet. 26, 71–112 (1992).

    Article  CAS  Google Scholar 

  6. Swanson, R.V. & Simon, M.I. Signal transduction: bringing the eukaryotes up to speed. Curr. Biol. 4, 234–237 (1994).

    Article  CAS  Google Scholar 

  7. Borkovich, K.A., Kaplan, N., Hess, J.F. & Simon, M.I. Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer. Proc. natn. Acad. Sci. U.S.A. 86, 1208–1212 (1989).

    Article  CAS  Google Scholar 

  8. Borkovich, K.A. & Simon, M.I. The dynamics of protein phosphorylation in bacterial chemotaxis. Cell 63, 1339–1348 (1990).

    Article  CAS  Google Scholar 

  9. Ninfa, E.G., Stock, A., Mowbray, S. & Stock, J. Reconstitution of the bacterial chemotaxis signal transduction system from purified components. J. biol. Chem. 266, 9764–9770 (1991).

    CAS  PubMed  Google Scholar 

  10. Borkovich, K.A., Alex, L.A. & Simon, M.I. Attenuation of sensory receptor signaling by covalent modification. Proc. natn. Acad. Sci. U.S.A. 89, 6756–6760 (1992).

    Article  CAS  Google Scholar 

  11. Gegner, J.A., Graham, D.R., Roth, A.F. & Dahlquist, F.W. Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell 70, 975–982 (1992).

    Article  CAS  Google Scholar 

  12. Schuster, S.C., Swanson, R.V., Alex, L.A., Bourret, R.B. & Simon, M.I. Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance. Nature 365, 343–347 (1993).

    Article  CAS  Google Scholar 

  13. Hess, J.F., Oosawa, K., Kaplan, N. & Simon, M.I. Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell 53, 79–87 (1988).

    Article  CAS  Google Scholar 

  14. Stock, A., Koshland, Jr., D.E. & Stock, J. Homologies between the Salmonella typhimurium CheY protein and proteins involved in the regulation of chemotaxis, membrane protein synthesis, and sporulation. Proc. natn. Acad. Sci. U.S.A. 82, 7989–7993 (1985).

    Article  CAS  Google Scholar 

  15. Stewart, R.C., Roth, A.F. & Dahlquist, F.W. Mutations that affect control of the methylesterase activity of CheB, a component of the chemotaxis adaptation system in Escherichia coli . J. Bact. 172, 3388–3399 (1990).

    Article  CAS  Google Scholar 

  16. Lupas, A. & Stock, J. Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis. J. biol. Chem. 264, 17337–17342 (1989).

    CAS  PubMed  Google Scholar 

  17. Sanders, D.A., Gillece-Castro, B.L., Burlingame, A.L. & Koshland, Jr., D.E. Phosphorylation site of NtrC, a protein phosphatase whose covalent intermediate activates transcription. J. Bact. 174, 5117–5122 (1992).

    Article  CAS  Google Scholar 

  18. Lukat, G.S., McCleary, W.R., Stock, A.M. & Stock, J.B. Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc. natn. Acad. Sci. U.S.A. 89, 718–722 (1992).

    Article  CAS  Google Scholar 

  19. Stock, A.M., Martinez-Hackert, E., Rasmussen, B.F., West, A.H., Stock, J.B., Ringe, D. & Petsko, G.A. Structure of the Mg(2+)-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochem. 32, 13375–13380 (1993).

    Article  CAS  Google Scholar 

  20. Volz, K. Structural conservation in the CheY superfamily. Biochem. 32, 11741–11753 (1994).

    Article  Google Scholar 

  21. McNally, D.F. & Matsumura, P. Bacterial chemotaxis signaling complexes: formation of a CheA/CheW complex enhances autophosphorylation and affinity for CheY. Proc. natn. Acad. Sci. U.S.A. 88, 6269–6273 (1991).

    Article  CAS  Google Scholar 

  22. Swanson, R.V., Schuster, S.C. & Simon, M.I. Expression of CheA fragments which define domains encoding kinase, phosphotransfer, and CheY binding activities. Biochem. 32, 7623–7629 (1993).

    Article  CAS  Google Scholar 

  23. Bruix, M., Pascual, J., Santoro, J., Prieto, J., Serrano, L. & Rico, M. 1H- and 15N-NMR assignment and solution structure of the chemotactic Escherichia coliCheY protein. Eur. J. Biochem. 215, 573–585 (1993).

    Article  CAS  Google Scholar 

  24. Moy, F.J., Matsumura, P., Lowry, D., Dahlquist, F.W. & Domaille, P.J., Assignments, secondary structure, global fold, and dynamics of chemotaxis Y protein using three- and four-dimensional heteronuclear (13C, 15N) NMR spectroscopy. Biochemistry 33, 10731–10742 (1994).

    Article  CAS  Google Scholar 

  25. Gegner, J.A. & Dahlquist, F.W. Signal transduction in bacteria: CheW forms a reversible complex with the protein kinase, CheA. Proc. natn. Acad. Sci. U.S.A. 88, 750–754 (1991).

    Article  CAS  Google Scholar 

  26. Morrison, T.B. & Parkinson, J.S. Liberation of an interaction domain from the phosphotransfer region of CheA, a signaling kinase of Escherichia coli . Proc. natn. Acad. Sci. U.S.A. 91, 5485–5489 (1994).

    Article  CAS  Google Scholar 

  27. Volz, K. & Matsumura, P. Crystal structure of Escherichia coliCheY refined at 1.7 Å resolution. J. biol. Chem. 266, 15511–15519 (1991).

    CAS  PubMed  Google Scholar 

  28. Hess, J.F., Bourret, R.B., Simon, M.I. Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature 336, 139–143 (1988).

    Article  CAS  Google Scholar 

  29. Lowry, D.F., Roth, A.F., Rupert, P.B., Moy, F.J., Domaille, P.J. & Matsumura, P. Signal transduction in chemotaxis. A propagating conformation change upon phosphorylation of CheY. J. biol. Chem. 269, 26358–26362 (1994).

    CAS  PubMed  Google Scholar 

  30. Blat, Y. & Eisenbach, M. Phosphorylation-dependent binding of the chemotaxis signal molecule CheY to its phosphatase, CheZ. Biochem. 33, 902–906 (1994).

    Article  CAS  Google Scholar 

  31. Welch, M., Oosawa, K., Aizawa, S. & Eisenbach, M. Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc. natn. Acad. Sci. U.S.A. 90, 8787–8791 (1993).

    Article  CAS  Google Scholar 

  32. Roman, S.J., Meyers, M., Volz, K. & Matsumura, P. A chemotactic signaling surface on CheY defined by suppressors of flagellar switch mutations. J. Bact. 174, 6247–6255 (1992).

    Article  CAS  Google Scholar 

  33. Sockett, H., Yamaguchi, S., Kihara, M., Irikura, M.V. & Macnab, R.M. Molecular analysis of the flagellar switch protein FliM of Salmonella typhimurium . J. Bact. 174, 793–806 (1992).

    Article  CAS  Google Scholar 

  34. Bourret, R.B., Hess, J.F. & Simon, M.I. Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY. Proc. natn. Acad. Sci. U.S.A. 87, 41–45 (1990).

    Article  CAS  Google Scholar 

  35. McEvoy, M.M., Zhou, H., Roth, A.F., Lowry, D.F., Morrison, T.B., Kay, L.E. & Dahlquist, F.W. Nuclear magnetic resonance assignments and global fold of a CheY-binding domain in CheA, the chemotaxis-specific kinase of E. coli . Biochemistry, in the press.

  36. Gill, S.C. & von Hippel, P.H. Calculation of protein extinction coefficients from aminoacid sequence data. Anal. Biochem. 182, 391–326 (1989).

    Article  Google Scholar 

  37. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Swanson, R., Lowry, D., Matsumura, P. et al. Localized perturbations in CheY structure monitored by NMR identify a CheA binding interface. Nat Struct Mol Biol 2, 906–910 (1995). https://doi.org/10.1038/nsb1095-906

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1095-906

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing